scholarly journals Rapid Lipid Content Screening in Neochloris Oleoabundans by Carbon-Based Dielectrophoresis

2021 ◽  
Vol 4 (1) ◽  
pp. 41
Author(s):  
Cynthia M. Galicia-Medina ◽  
Matías Vázquez-Piñón ◽  
Sergio Camacho-León ◽  
Gibran S. Alemán-Nava ◽  
Roberto C. Gallo-Villanueva ◽  
...  

The use of microalgae as a biomass source for biofuel production has drawn the attention of many scientists due to several associated environmental advantages over conventional terrestrial crops, including microalgae growing using wastewaters and a higher CO2 fixation rate, contributing to the reduction of atmospheric concentration. Consequently, a reliable cytoplasmic lipid screening process in microalgae is a valuable asset for harvesting optimization in mass production processes. In this study, the heterogeneous cytoplasmic lipid content of Neochloris oleoabundans was dielectrophoretically assorted in a microfluidic device using castellated carbon microelectrodes. The experiments carried out over a wide frequency window (100 kHz to 30 MHz) at a fixed amplitude of 7 VPP showed a significant contrast between the dielectrophoretic behavior of high lipid content and low lipid content cells at the low frequency range (100–800 kHz). A weak response for the mid and high frequency ranges (1–30 MHz) was also identified for high and low lipid content samples, allowing one to establish an electrokinetic footprint of the studied strain. These results suggest that the development of a reliable screening process for harvesting optimization is possible through a fast and straightforward mechanism, such as dielectrophoresis, which is a low-cost and easy-to-machine material that employs glassy carbon. The experimental setup in this study involved in vitro culturing of nitrogen-replete (N+) and nitrogen-deplete (N-) cell suspensions to promote low and high lipid production in cells, respectively. Cell populations were monitored using spectrophotometry, and the resulting lipid development among cells was quantified by Nile red fluorescence.

Plants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 463 ◽  
Author(s):  
Ali Nawaz Kumbhar ◽  
Meilin He ◽  
Abdul Razzaque Rajper ◽  
Khalil Ahmed Memon ◽  
Muhammad Rizwan ◽  
...  

The decline in fossil fuel reserves has forced researchers to seek out alternatives to fossil fuels. Microalgae are considered to be a promising feedstock for sustainable biofuel production. Previous studies have shown that urea is an important nitrogen source for cell growth and the lipid production of microalgae. The present study investigated the effect of different concentrations of urea combined with kelp waste extract on the biomass and lipid content of Chlorella sorokiniana. The results revealed that the highest cell density, 20.36 × 107 cells−1, and maximal dry biomass, 1.70 g/L, were achieved in the presence of 0.5 g/L of urea combined with 8% kelp waste extract. Similarly, the maximum chlorophyll a, b and beta carotenoid were 10.36 mg/L, 7.05, and 3.01 mg/L, respectively. The highest quantity of carbohydrate content, 290.51 µg/mL, was achieved in the presence of 0.2 g/L of urea and 8% kelp waste extract. The highest fluorescence intensity, 40.05 × 107 cells−1, and maximum total lipid content (30%) were achieved in the presence of 0.1 g/L of urea and 8% kelp waste extract. The current study suggests that the combination of urea and kelp waste extract is the best strategy to enhance the biomass and lipid content in Chlorella sorokiniana.


2021 ◽  
Vol 16 (10) ◽  
pp. 144-155
Author(s):  
Van Lal Michael Chhandama ◽  
Belur Kumudini Satyan

Microalgae emerged as a competent feedstock for biodiesel production because of high growth rate and lipid content. This work focuses on isolation of novel microalgal strain from different sources of water for the production of biodiesel. The isolated microalgae, Pleurastrum insigne possessed high lipid content (~28 % dcw), further optimized to 57.06 % dcw using a statistical design (CCD) under Response Surface Methodology. Lipid production was optimized by nutrient (nitrogen and phosphorus) and pH stress. The different type of fatty acids present in the optimized lipid was also profiled using GCMS. Biodiesel yield was found to be 82.14 % of the total lipid and the fuel properties tested have met IS, ASTM and EN biodiesel standards.


2012 ◽  
Vol 24 (1) ◽  
pp. 184
Author(s):  
C. Bolden ◽  
W. Abdela ◽  
T. Samuel ◽  
L. Simon ◽  
G. Wirtu

High lipid content in in vitro–derived embryos of several species is associated with poor developmental potential and cryosurvival of oocytes. Lipid content of oocytes varies among species and embryonic lipid content is further influenced by the culture environment. In spite of the variation among species, the relative contribution of de novo lipid synthesis during oocyte maturation or subsequent embryonic development is unknown. In the present study, we evaluated the expression of acetyl coenzyme A carboxylase (ACCα), the key rate-limiting enzyme of lipogenesis, in oocytes of 3 species with high lipid content. Ovaries of dogs and cats were collected from a local veterinary clinic and those of pigs from an abattoir. Cat and dog oocytes were recovered by the slicing method of the ovaries. Porcine oocytes were recovered by aspiration of ovarian follicles. Immediately after collection, oocytes were fixed for 30 min using a solution of 10% neutral buffered formalin. The ACCα enzyme expression was evaluated in porcine, cat and dog oocytes by immunofluorescence using a goat anti-human ACCα primary antibody followed by fluorescein isothiocyanate-conjugated anti-goat secondary antibody. The study was replicated, with negative controls, 3 times using ≥30 oocytes per species. Messenger RNA expression of ACCα gene was also evaluated in pig oocytes. The RNA was isolated from fat tissue, pooled good-quality oocytes (n = 30), pooled poor-quality oocytes (n = 30) and cumulus cells using the RNeasy Micro kit (Qiagen, Valencia, CA, USA) according to the manufacturer's instructions. Complementary DNA was synthesised from 200 ng of RNA using Quantitect reverse-transcription kit (Qiagen) according to the manufacturer's instructions. Real-time PCR assays were carried out in duplicate and expression of ACCα mRNA levels relative to fat was determined. Oocytes and cumulus investment in cats, dogs and pigs strongly expressed ACCα. Expression of the protein was uniformly distributed through the entire ooplasm. The mRNA expression of ACCα in good- and poor-quality oocytes and cumulus cells relative to fat tissue was 11.5, 1.4 and 40.1%, respectively. Further studies are warranted on the dynamics of expression of ACC during in vitro maturation and the functional activity of the enzyme. We extend our appreciation to the Alabama Animal Alliance Inc. (Montgomery) for providing us with dog and cat ovaries; the Lambert-Powell Meats Laboratory of Auburn University for donating pig ovaries; and Dr. James Webster, Dr. Tsegaye Habtemariam and Dr. Abdalla Eljack for administrative support.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Hossein Alishah Aratboni ◽  
Nahid Rafiei ◽  
Raul Garcia-Granados ◽  
Abbas Alemzadeh ◽  
José Rubén Morones-Ramírez

Abstract The use of fossil fuels has been strongly related to critical problems currently affecting society, such as: global warming, global greenhouse effects and pollution. These problems have affected the homeostasis of living organisms worldwide at an alarming rate. Due to this, it is imperative to look for alternatives to the use of fossil fuels and one of the relevant substitutes are biofuels. There are different types of biofuels (categories and generations) that have been previously explored, but recently, the use of microalgae has been strongly considered for the production of biofuels since they present a series of advantages over other biofuel production sources: (a) they don’t need arable land to grow and therefore do not compete with food crops (like biofuels produced from corn, sugar cane and other plants) and; (b) they exhibit rapid biomass production containing high oil contents, at least 15 to 20 times higher than land based oleaginous crops. Hence, these unicellular photosynthetic microorganisms have received great attention from researches to use them in the large-scale production of biofuels. However, one disadvantage of using microalgae is the high economic cost due to the low-yields of lipid content in the microalgae biomass. Thus, development of different methods to enhance microalgae biomass, as well as lipid content in the microalgae cells, would lead to the development of a sustainable low-cost process to produce biofuels. Within the last 10 years, many studies have reported different methods and strategies to induce lipid production to obtain higher lipid accumulation in the biomass of microalgae cells; however, there is not a comprehensive review in the literature that highlights, compares and discusses these strategies. Here, we review these strategies which include modulating light intensity in cultures, controlling and varying CO2 levels and temperature, inducing nutrient starvation in the culture, the implementation of stress by incorporating heavy metal or inducing a high salinity condition, and the use of metabolic and genetic engineering techniques coupled with nanotechnology.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5960
Author(s):  
Rahul Saini ◽  
Krishnamoorthy Hegde ◽  
Carlos Saul Osorio-Gonzalez ◽  
Satinder Kaur Brar ◽  
Pierre Vezina

The study aims to explore microbial lipid production using an abundant and low-cost lignocellulosic biomass derived from forestry residues. Sugar-rich undetoxified hydrolysate was prepared using hardwood and softwood sawdust and used for lipid production as a carbon source from an oleaginous yeast, Rhodosporidium toruloides-1588. The maximum biomass obtained was 17.09 and 19.56 g/L in hardwood and softwood hydrolysate, respectively. Sugar consumption in both hydrolysates was >95%, with a maximum lipid accumulation of 36.68% at 104 h and 35.24% at 96 h. Moreover, R. toruloides-1588 exhibited tolerance to several toxic compounds such as phenols, organic acids and furans present in hydrolysates. The lipid characterization showed several monosaturated and polyunsaturated fatty acids, making it a potential feedstock for biofuels and oleochemicals production. This study confirms the credibility of R. toruloides-1588 as a suitable lipid producer using hydrolysates from forestry residues as a substrate. Additionally, lipids obtained from R. toruloides-1588 could be a potential feedstock for advanced biofuel production as well as for food and pharmaceutical applications.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Zhenhua Yang ◽  
Yue Zhao ◽  
Zhiyong Liu ◽  
Chenfeng Liu ◽  
Zhipeng Hu ◽  
...  

Microalgae are considered to be a potential major biomass feedstock for biofuel due to their high lipid content. However, no correlation equations as a function of initial nitrogen concentration for lipid accumulation have been developed for simplicity to predict lipid production and optimize the lipid production process. In this study, a lipid accumulation model was developed with simple parameters based on the assumption protein synthesis shift to lipid synthesis by a linear function of nitrogen quota. The model predictions fitted well for the growth, lipid content, and nitrogen consumption of Coelastrum sp. HA-1 under various initial nitrogen concentrations. Then the model was applied successfully in Chlorella sorokiniana to predict the lipid content with different light intensities. The quantitative relationship between initial nitrogen concentrations and the final lipid content with sensitivity analysis of the model were also discussed. Based on the model results, the conversion efficiency from protein synthesis to lipid synthesis is higher and higher in microalgae metabolism process as nitrogen decreases; however, the carbohydrate composition content remains basically unchanged neither in HA-1 nor in C. sorokiniana.


2021 ◽  
Author(s):  
John Sittmann ◽  
Munhyung Bae ◽  
Emily Mevers ◽  
Muzi Li ◽  
Andrew Quinn ◽  
...  

Abstract Diatoms are photosynthetic microalgae that fix a significant fraction of the world’s carbon. Because of their photosynthetic efficiency and high-lipid content, diatoms are priority candidates for biofuel production. Here, we report that sporulating Bacillus thuringiensis and other members of the Bacillus cereus group, when in co-culture with the marine diatom Phaeodactylum tricornutum, significantly increase diatom cell count. Bioassay-guided purification of the mother cell lysate of B. thuringiensis led to the identification of two diketopiperazines (DKPs) that both stimulate P. tricornutum growth and increase its lipid content. These findings may be exploited to enhance P. tricornutum growth and microalgae-based biofuel production. As increasing numbers of DKPs are isolated from marine microbes, the work gives potential clues to bacterial-produced growth factors for marine microalgae.


2020 ◽  
Vol 82 (6) ◽  
pp. 1120-1130
Author(s):  
H. J. Choi

Abstract As a byproduct of agriculture, rice bran can be a good alternative carbon source to mass-produce microalgae and increase lipid content. The purpose of this study was to investigate the effects of rice bran extract (RBE) on the mass culture and oil content of microalgae. Various parameters were applied to the growth rate model to explain the dynamics of substrate inhibition and growth of microalgae. The rice bran contains 46.1% of carbohydrates, in which is 38.3% glucose, and is very suitable as a carbon source for microalgae growth. The culture with RBE had a four times higher biomass production than microalgae cultured on Jaworski's medium (JM) with a small amount of 1 g/L. In addition, for RBE, the lipid content was three times higher and saturated fatty acid was 3% lower than were those of JM. According to the above results, when Chlorella vulgaris is cultured using RBE, a high amount of biomass and high lipid content can be obtained with a small amount of RBE. RBE is a discarded waste and has a high content of glucose, so it can be replaced by an organic carbon source to increase microbial biomass growth and lipid content at low cost.


BioResources ◽  
2011 ◽  
Vol 7 (1) ◽  
pp. 686-695
Author(s):  
Xun Yang ◽  
Pinghuai Liu ◽  
Zongdi Hao ◽  
Jie Shi ◽  
Sen Zhang

Fifty-three algal cultures were isolated from freshwater lakes in Hainan, China. Four microalgal isolates were selected because they could be successfully cultivated at high density and demostrated a strong fluorescence after being stained with nile red. These cultures were identified as strains of Chlorella sp. C11, Chlamydomonas reinhardtii C22, Monoraphidium dybowskii C29, and Chlorella sp. HK12 through microscopic and 18S rDNA analysis. Under similar conditions, the lipid productivity of Chlorella sp. C11, Chla. reinhardtii C22, M. dybowskii C29 , and Chlorella sp. HK12 were 1.88, 2.79, 2.00, and 3.25 g L-1, respectively. Chla. reinhardtii C22 yielded a higher lipid content (51%), with a lower biomass concentration (5.47 g dwt L-1). Chlorella sp. HK12 reached a growth rate of 0.88 day-1 at OD540nm and yielded a biomass concentration of 7.56 g dwt L-1, with a high lipid content of 43%. Gas chromatography/ mass spectrometry analysis indicated that lipid fraction mainly comprises hydrocarbons including palmitic acid, stearic acid, oleic acid, linoleic acid, and linolenic acids. Our results suggest that Chlorella sp. HK12 is a promising species for biodiesel production, because of its high lipid productivity and a relatively high content of oleic acid.


Micromachines ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1023
Author(s):  
Cynthia Galicia-Medina ◽  
Matías Vázquez-Piñón ◽  
Gibran Alemán-Nava ◽  
Roberto Gallo-Villanueva ◽  
Sergio Martínez-Chapa ◽  
...  

In this study, we carried out a heterogeneous cytoplasmic lipid content screening of Neochloris oleoabundans microalgae by dielectrophoresis (DEP), using castellated glassy carbon microelectrodes in a PDMS microchannel. For this purpose, microalgae were cultured in nitrogen-replete (N+) and nitrogen-deplete (N−) suspensions to promote low and high cytoplasmic lipid production in cells, respectively. Experiments were carried out over a wide frequency window (100 kHz–30 MHz) at a fixed amplitude of 7 VPP. The results showed a statistically significant difference between the dielectrophoretic behavior of N+ and N− cells at low frequencies (100–800 kHz), whereas a weak response was observed for mid- and high frequencies (1–30 MHz). Additionally, a finite element analysis using a 3D model was conducted to determine the dielectrophoretic trapping zones across the electrode gaps. These results suggest that low-cost glassy carbon is a reliable material for microalgae classification—between low and high cytoplasmic lipid content—through DEP, providing a fast and straightforward mechanism.


Sign in / Sign up

Export Citation Format

Share Document