scholarly journals Modulation of the Immune Response to Improve Health and Reduce Foodborne Pathogens in Poultry

2019 ◽  
Vol 7 (3) ◽  
pp. 65 ◽  
Author(s):  
Christina Swaggerty ◽  
Todd Callaway ◽  
Michael Kogut ◽  
Andrea Piva ◽  
Ester Grilli

Salmonella and Campylobacter are the two leading causes of bacterial-induced foodborne illness in the US. Food production animals including cattle, swine, and chickens are transmission sources for both pathogens. The number of Salmonella outbreaks attributed to poultry has decreased. However, the same cannot be said for Campylobacter where 50–70% of human cases result from poultry products. The poultry industry selects heavily on performance traits which adversely affects immune competence. Despite increasing demand for poultry, regulations and public outcry resulted in the ban of antibiotic growth promoters, pressuring the industry to find alternatives to manage flock health. One approach is to incorporate a program that naturally enhances/modulates the bird’s immune response. Immunomodulation of the immune system can be achieved using a targeted dietary supplementation and/or feed additive to alter immune function. Science-based modulation of the immune system targets ways to reduce inflammation, boost a weakened response, manage gut health, and provide an alternative approach to prevent disease and control foodborne pathogens when conventional methods are not efficacious or not available. The role of immunomodulation is just one aspect of an integrated, coordinated approach to produce healthy birds that are also safe and wholesome products for consumers.

2014 ◽  
Vol 14 (3) ◽  
pp. 491-500 ◽  
Author(s):  
Darabighane Babak ◽  
Samuel N. Nahashon

AbstractProhibition of application of antibiotic growth promoters in broiler chicken diets has resulted in increased use of herbs as natural additives in broiler feeds over the recent years. Researchers particularly look for herbs that can affect such parameters as growth performance, immune response, or treatment of certain diseases. Aloe vera is a well-known herb characterized by properties such as anti-bacterial, anti-viral, anti-fungal, anti-tumor, anti-inflammatory, immunomodulatory, wound-healing, anti-oxidant, and anti-diabetic effects. During the past years, attention has shifted toward Aloe vera as a natural additive to broiler diets, and studies have shown that Aloe vera can improve immune response and growth performance in broilers. In addition, Aloe vera is an excellent alternative for antibiotic growth promoters and anticoccidial drugs. Since Aloe vera can be used for broilers in the form of gel, powder, ethanolic extract, aqueous extract, and a polysaccharide contained in Aloe vera gel (i.e. acemannan), more studies are required to determine the best form and to compare Aloe vera with other medicinal herbs. This paper reviews effects of Aloe vera on intestinal microflora, growth performance, immune response, and coccidiosis in broiler chickens.


AMB Express ◽  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Danish Sharafat Rajput ◽  
Dong Zeng ◽  
Abdul Khalique ◽  
Samia Sharafat Rajput ◽  
Hesong Wang ◽  
...  

AbstractNecrotic enteritis (NE) is being considered as one of the most important intestinal diseases in the recent poultry production systems, which causes huge economic losses globally. NE is caused by Clostridium perfringens, a pathogenic bacterium, and normal resident of the intestinal microflora of healthy broiler chickens. Gastrointestinal tract (GIT) of broiler chicken is considered as the most integral part of pathogen’s entrance, their production and disease prevention. Interaction between C. perfringens and other pathogens such as Escherichia coli and Salmonella present in the small intestine may contribute to the development of NE in broiler chickens. The antibiotic therapy was used to treat the NE; however European Union has imposed a strict ban due to the negative implications of drug resistance. Moreover, antibiotic growth promoters cause adverse effects on human health as results of withdrawal of antibiotic residues in the chicken meat. After restriction on use of antibiotics, numerous studies have been carried out to investigate the alternatives to antibiotics for controlling NE. Thus, possible alternatives to prevent NE are bio-therapeutic agents (Probiotics), prebiotics, organic acids and essential oils which help in nutrients digestion, immunity enhancement and overall broiler performance. Recently, probiotics are extensively used alternatives to antibiotics for improving host health status and making them efficient in production. The aim of review is to describe a replacement to antibiotics by using different microbial strains as probiotics such as bacteria and yeasts etc. having bacteriostatic properties which inhibit growth of pathogens and neutralize the toxins by different modes of action.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 181-181
Author(s):  
Martin Lessard ◽  
Mylène Blais ◽  
Guylaine Talbot ◽  
J Jacques Matte ◽  
Ann Letellier ◽  
...  

Abstract Lactation, feeding conditions, microbial interventions and piglet growth in the first few weeks of life have important impact on the intestinal microbiota establishment and immune system development of piglets. Indeed, colostrum and milk contain various bioactive components such as immune factors, antimicrobial peptides and oligosaccharides that contribute to maintain intestinal homeostasis and regulate interactions between microbiota and host immune system. Recent results revealed that low birth weight piglet (LBWP) with poor weight gain during the first two weeks of life develop different intestinal microbiota and immune response profiles compared to high BWP (HBWP) littermates. Consequently, piglets within litters may have different resilience to infections after weaning and benefit from feed additives in a specific manner. A study has been performed to evaluate the potential of bovine colostrum extract (BC) as replacement to plasma proteins for improving gut health and resilience to Salmonella infection in piglets. Results revealed that in weaned piglets fed BC, intestinal microbiota was differently modulated and bacterial dysbiosis induced by Salmonella was restored faster. Moreover, expression of genes involved in innate immunity such as β-defensin-2 and glutathione peroxidase-2 was respectively down- and up-regulated in BC fed piglets. A combination of dietary supplementation with BC, cupper and vitamins A and D has also been tested in LBWP and HBWP, and there is clear evidence that BC in combination with other feed additives promote growth and gut health in both LBWP and HBWP. The porcine intestinal epithelial cell line IPEC-J2 was used to better understand the functional properties of BC. Results indicated that BC improves wound healing, enhances barrier function and modulates the expression of several genes involved in innate immune response. Finally, as microbial intervention, the potential of fecal transplantation to modulate intestinal microbiota and immune system development of piglets is under investigation and will be discussed.


Animals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1718
Author(s):  
Zuamí Villagrán-de la Mora ◽  
María Esther Macías-Rodríguez ◽  
Jenny Arratia-Quijada ◽  
Yesica Sughey Gonzalez-Torres ◽  
Karla Nuño ◽  
...  

Clostridium perfringens (Cp.) is the cause of human foodborne desease. Meat and poultry products are identified as the main source of infection for humans. Cp. can be found in poultry litter, feces, soil, dust, and healthy birds’ intestinal contents. Cp. strains are known to secrete over 20 identified toxins and enzymes that could potentially be the principal virulence factors, capable of degrading mucin, affecting enterocytes, and the small intestine epithelium, involved in necrotic enteritis (NE) pathophysiology, also leading to immunological responses, microbiota modification and anatomical changes. Different environmental and dietary factors can determine the colonization of this microorganism. It has been observed that the incidence of Cp-associated to NE in broilers has increased in countries that have stopped using antibiotic growth promoters. Since the banning of such antibiotic growth promoters, several strategies for Cp. control have been proposed, including dietary modifications, probiotics, prebiotics, synbiotics, phytogenics, organic acids, and vaccines. However, there are aspects of the pathology that still need to be clarified to establish better actions to control and prevention. This paper reviews the current knowledge about Cp. as foodborne pathogen, the pathophysiology of NE, and recent findings on potential strategies for its control.


Author(s):  
R.M. Kay ◽  
P. Poole

Probiotics are becoming increasingly advocated as being of benefit to calf rearers as a feed additive to improve the growth rates and health of rearing calves. There are several organisms and mixtures of organisms that are now commercially available which may prove to be a realistic alternative to the widespread use of antibiotic growth promoters. There is a lack of published work by independent researchers on the efficacy of probiotics for rearing calves but a wealth of manufacturers literature. Two experiments at Drayton E.H.F. investigated the use of Enterococcus faecium as a probiotic agent during the rearing period of purchased calves.


Antibiotics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 210 ◽  
Author(s):  
Mohamed E. Abd El-Hack ◽  
Mahmoud Alagawany ◽  
Abdel-Moneim E. Abdel-Moneim ◽  
Noureldeen G. Mohammed ◽  
Asmaa F. Khafaga ◽  
...  

The removal of antibiotic growth promoters (AGPs) as feed additives in poultry nutrition from the market in many countries has compelled researchers to find unconventional and safe alternatives to AGPs. Probiotics, prebiotics, enzymes, organic acids, herbs, immune-stimulants and essential oils (EO) have been investigated as feed additives in poultry production. Cinnamon (Cinnamomum zeylanicum), one of the oldest medicinal plants and widely used around the world, can be used in poultry rations in the form of powder or essential oil. Essential oils produced from aromatic plants have become more interesting owing to their potential effects as hypocholesterolaemic agents, antioxidants, antimicrobials, antifungals and stimulants of digestive enzymes. The potential insecticidal and antimicrobial activities of EO against pathogens that cause spoilage in agriculture crops and human diseases might be attributed mainly to the high content of volatile components (mainly cinnamaldehyde, eugenol and carvacrol) in cinnamon oil. The present review focuses on the effects of cinnamon oil as a feed additive on poultry performance, carcass traits, meat quality, hypocholesterolaemic impact, antioxidant activity, immunity and microbiological aspects.


2020 ◽  
Vol 44 (2) ◽  
Author(s):  
Danung Nur Adli ◽  
Osfar Sjofjan

Numerous efforts have been undertaken to develop suitable alternatives in order to counteract the anticipated drawbacks associated with the ban of antibiotic growth promoters (AGPs). The research purpose is to carry out the possible effect of mannan-riched fraction (MRF) and probiotic enhanced water as natural growth promoters (NGPs) on performance, relative organ weight, serum blood biochemistry, intestinal properties, and intestinal micro flora. 320 one-day-old Arbor Acres broiler were randomly allocated to 4 dietary treatments and 4 replicates of 20 birds per cage. four treatments used for research were dietary with control (T0), basal diet + MRF 80 g (T1), Drinking water + 2 mL/L combination feed additive (T2), and basal feed + MRF 80 g+ drinking water 2 mL/L combination feed additive (T3). The results showed that using mannan riched fraction (MRF) and combination with probiotic-enhanced liquid acidifier presented significant difference (P > 0.05) on body weight gain at 1-28 days and intestinal properties. On the blood biochemistry, the effect of supplementation began to reduce the amount of glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) at 21 days periods. To sum up, the addition of mannan-riched fraction and combination with probiotic enhanced liquid acidifier doesn’t impacted on growth performance, and serum blood biochemistry but give significant effect on intestinal properties of broiler.


Sign in / Sign up

Export Citation Format

Share Document