scholarly journals Diversity, Chemical Constituents and Biological Activities of Endophytic Fungi Isolated from Schinus terebinthifolius Raddi

2020 ◽  
Vol 8 (6) ◽  
pp. 859
Author(s):  
Paola dos Santos da Rocha ◽  
Vanessa Marina Branco Paula ◽  
Silvia Cristina Figueira Olinto ◽  
Edson Lucas dos Santos ◽  
Kely de Picoli Souza ◽  
...  

Schinus terebinthifolius Raddi is a medicinal plant widely used for the treatment of various diseases. The secondary metabolites responsible for the pharmacological properties can be produced directly by the plant or by endophytic fungi. The objective of this study was to evaluate the diversity of endophytic fungi of different parts of S. terebinthifolius and to identify chemical compounds produced by endophytes and their antioxidant and antibacterial activities. For this, fruits, stem bark and roots were dried, ground and placed in fungal growth medium. The selected endophytes were grown and subjected to extraction with ethyl acetate. DPPH, FRAP, β-carotene bleaching and antimicrobial assays were performed. The phylogenetic tree was elaborated, encompassing 15 different species. The fungal extracts showed hydroxybenzoic acids and 1-dodecanol as predominant compounds. All fungal extracts exhibited antioxidant activity. The fungal extracts exhibited bactericidal and bacteriostatic activities against Gram-positive and Gram-negative bacterial ATCC strains and against methicillin-resistant nosocomial bacteria. Among the 10 endophytic fungi evaluated, the extract of the fungus Ochrocladosporium elatum showed higher phenolic content and exhibited higher antioxidant and antibacterial activities in all tests. Together, the results increase the known diversity of S. terebinthifolius endophytic fungi, secondary metabolites produced and their antioxidant and antibacterial activities.

Author(s):  
Syed Shabana ◽  
K. Rajya Lakshmi ◽  
A. Krishna Satya

: Marine fungi are valuable and richest sources of novel natural products for medicinal and pharmaceutical industries. Nutrient depletion, competition or any other types of metabolic stress which limit marine fungal growth promote the formation and secretion of secondary metabolites. Generally secondary metabolites can be produced by many different metabolic pathways and include antibiotics, cytotoxic and cyto-stimulatory compounds. Marine fungi produce many different types of metabolite that are of commercial importance. This review paper deals about 187 novel compounds and 212 other known compounds with anticancer and antibacterial activities with a special focus on the period from 2011-2019. Furthermore, this review highlights the sources of organisms, chemical classes and biological activities (anticancer and antibacterial) of metabolites, that were isolated and structurally elucidated from marine fungi to throw a helping hand for novel drug development.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zizhong Tang ◽  
Yihan Qin ◽  
Wenhui Chen ◽  
Zhiqiao Zhao ◽  
Wenjie Lin ◽  
...  

The objective of this study was to evaluate the diversity of endophytic fungi of different parts of Ligusticum chuanxiong Hort (CX) and further characterize their biological activities and identify chemical compounds produced by these endophytic fungi. A total of 21 endophytic fungi were isolated and identified from CX. Penicillium oxalicum, Simplicillium sp., and Colletotrichum sp. were identified as promising strains by the color reaction. Comparing different organic extracts of the three strains, it was observed that the ethyl acetate extract of Penicillium oxalicum and Simplicillium sp. and the n-butanol extract of Colletotrichum sp. showed significant antioxidant and antibacterial activities. The ethyl acetate extracts of Penicillium oxalicum had outstanding antioxidant and antibacterial effects, and its radical scavenging rates for ABTS and DPPH were 98.43 ± 0.006% and 90.11 ± 0.032%, respectively. At the same time, their IC50 values were only 0.18 ± 0.02 mg/mL and 0.04 ± 0.003 mg/mL. The ethyl acetate extract of Penicillium oxalicum showed MIC value of only 0.5 mg/mL against Escherichia coli and Staphylococcus aureus. By liquid chromatography-mass spectrometry (LC-MS), we found that Penicillium oxalicum could produce many high-value polyphenols, such as hesperidin (36.06 μmol/g), ferulic acid (1.17 μmol/g), and alternariol (12.64 μmol/g), which can be a potential resource for the pharmaceutical industry. In conclusion, these results increase the diversity of CX endophytic fungi and the antioxidant and antibacterial activities of their secondary metabolites.


2021 ◽  
Vol 22 (10) ◽  
Author(s):  
Syarifah Syarifah ◽  
Elfita Elfita ◽  
HARY WIDJAJANTI ◽  
ARUM SETIAWAN ◽  
ALFIA R. KURNIAWATI

Abstract. Syarifah, Elfita, Widjajanti H, Setiawan A, Kurniawati AR. 2021. Diversity of endophytic fungi from the root bark of Syzygium zeylanicum, and the antibacterial activity of fungal extracts, and secondary metabolite. Biodiversitas 22: 4572-4582. The decoction of the root bark of Syzygium zeylanicum has been used as traditional medicine, such as for treating pathogenic bacterial infections. Endophytic fungi that live in medicinal plant tissues have a high species diversity and biological activities correlate with their host. Therefore, this study aimed to explore the diversity of endophytic fungi from the root bark of S. zeylanicum and to determine the antibacterial activity of endophytic fungi and their secondary metabolites. In this study, we isolate and identify the endophytic fungi from the root bark of S. zeylanicum, continued by screening their antibacterial activity against two Gram-negative bacteria (Escherichia coli InaCCB5 and Salmonella thypi ATCC1048 and two Gram-positive bacteria (Staphylococcus aureus InaCCB4 and Bacillus subtilis InaCCB1204) by the Kirby-Bauer method. The fungal extract with the highest antibacterial activity proceeded with the isolation and determination of the structure of their bioactive compounds. The isolates were morphologically identified. Isolates that showed strong antibacterial activity were identified by molecular identification. Isolation of bioactive compounds was carried out by chromatographic techniques and the determination of the structure of pure chemical compounds was performed by the spectroscopic analysis. In total, there were 8 isolates of endophytic fungi were obtained from the root bark of S. zeylanicum, namely SZR1 – SZR8. SZR2 isolate has the highest antibacterial activity. Molecular identification through phylogenetic analysis showed that SZR2 isolate had high similarity with Penicillium brefeldianum. Isolation of bioactive compounds from SZR2 produced compound 1 in the form of light yellow crystals which showed strong antibacterial activity against S. typhi, E. coli, and B. subtilis with MIC values of 64 g/mL. Compound 1 was identified as p-hydroxybenzaldehyde, which was also obtained in its host. In conclusion, the endophytic fungus Penicillium brefeldianum produces similar secondary metabolites and antibacterial activity as its host plant.


2020 ◽  
Vol 27 (11) ◽  
pp. 1836-1854 ◽  
Author(s):  
Elena Ancheeva ◽  
Georgios Daletos ◽  
Peter Proksch

Background: Endophytes represent a complex community of microorganisms colonizing asymptomatically internal tissues of higher plants. Several reports have shown that endophytes enhance the fitness of their host plants by direct production of bioactive secondary metabolites, which are involved in protecting the host against herbivores and pathogenic microbes. In addition, it is increasingly apparent that endophytes are able to biosynthesize medicinally important “phytochemicals”, originally believed to be produced only by their host plants. Objective: The present review provides an overview of secondary metabolites from endophytic fungi with pronounced biological activities covering the literature between 2010 and 2017. Special focus is given on studies aiming at exploration of the mode of action of these metabolites towards the discovery of leads from endophytic fungi. Moreover, this review critically evaluates the potential of endophytic fungi as alternative sources of bioactive “plant metabolites”. Results: Over the past few years, several promising lead structures from endophytic fungi have been described in the literature. In this review, 65 metabolites are outlined with pronounced biological activities, primarily as antimicrobial and cytotoxic agents. Some of these metabolites have shown to be highly selective or to possess novel mechanisms of action, which hold great promises as potential drug candidates. Conclusion: Endophytes represent an inexhaustible reservoir of pharmacologically important compounds. Moreover, endophytic fungi could be exploited for the sustainable production of bioactive “plant metabolites” in the future. Towards this aim, further insights into the dynamic endophyte - host plant interactions and origin of endophytic fungal genes would be of utmost importance.


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 379 ◽  
Author(s):  
Dhurva Prasad Gauchan ◽  
Pratistha Kandel ◽  
Astha Tuladhar ◽  
Ashesh Acharya ◽  
Upendra Kadel ◽  
...  

Background: Endophytic fungi are largely underexplored in the discovery of natural bioactive products though being rich sources of novel compounds with promising pharmaceutical potential. In this study, Taxus wallichiana, which has huge medicinal value, was investigated for its endophytic diversity and capability to produce bioactive secondary metabolites by analyzing antioxidant, antimicrobial and cytotoxic properties. Methods: The endophytes were identified by ITS-PCR using genomic DNA samples. The secondary metabolites were extracted by solvent extraction method using ethyl acetate. The antioxidant activity was analyzed by Thin Layer Chromatography, Total Phenol Content (TPC), Total Flavonoid Content (TFC) and DPPH assay, and the antimicrobial activity was analyzed by agar-well diffusion method. Brine shrimp lethality assay was used to analyze the cytotoxicity of the fungal extracts. Results: Out of 16 different Taxus trees sampled from different locations of Dhorpatan, 13 distinctive endophytic fungi were isolated and grouped into 9 different genera: Bjerkandera, Trichoderma, Preussia, Botrytis, Arthrinium, Alternaria, Cladosporium, Sporormiella and Daldinia. The ethyl acetate extracts isolated from three endophytic fungi: Alternaria alternata, Cladosporium cladosporioides and Alternaria brassicae showed significant TPC values of 204±6.144, 312.3±2.147 and 152.7±4.958µg GAE/mg of dry extract, respectively, and TFC values of 177.9±2.911, 644.1±4.202 and 96.38±3.851µg RE/mg of dry extract, respectively. Furthermore, these three extracts showed a dose dependent radical scavenging activity with IC50 concentration of 22.85, 22.15 and 23.001 µg/ml, respectively. The extracts of C. cladosporioides and A. brassicae also showed promising antimicrobial activity against Escherichia coli, Staphylococcus aureus and Bacillus subtilis with a minimum inhibitory concentration of 250μg/ml for all bacteria. Both the samples showed cytotoxic property against shrimp nauplii with LC50 of 104.2 and 125.9µg/ml, respectively. Conclusions: The crude fungal extracts obtained from endophytes: A. alternata, C. cladosporioides and A. brassicae upon purification and further identification of the bioactive compounds can be a fascinating source for novel pharmaceutical agents.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6427 ◽  
Author(s):  
Chutima Tanapichatsakul ◽  
Sarunpron Khruengsai ◽  
Sakon Monggoot ◽  
Patcharee Pripdeevech

Endophytic fungi, which colonize within a host plant without causing any apparent diseases, have been considered as an important source of bioactive secondary metabolites containing antimicrobial and antioxidant activities. The aim of this research was to isolate the endophytic fungi ofCinnamomum loureiroiand then to screen their antimicrobial and antioxidant activities. A total of 11 fungal endophytes were isolated from healthy leaves ofCinnamomum loureiroibelonging to six genera:Botryosphaeria,Colletotrichum,Diaporthe,Fusarium,Neopestalotiopsis, andPestalotiopsis. All isolated strains were cultured and further extracted with ethyl acetate solvent. Antimicrobial activity of all crude endophytic fungal extracts was analyzed using disc diffusion assay against six bacterial and two fungal pathogens. Crude extracts of strains MFLUCC15-1130 and MFLUCC15-1131 showed broad-spectrum antimicrobial activity against all tested pathogens. Activity againstBacillus cereusandStaphylococcus epidermidiswas notable, showing the lowest minimum inhibitory concentration at 3.91 μg/mL. Antioxidant activity of all crude endophytic fungal extracts was also evaluated based on 2,2-diphenyl-1-picrylhydrazyl assay. Significant antioxidant activity was detected in the crude extracts of fungus MFLUCC15-1130 and MFLUCC15-1131 with IC50of 22.92 ± 0.67 and 37.61 ± 0.49 μg/mL, respectively. Using molecular identification, MFLUCC15-1130 and MFLUCC15-1131 were identified asNeopestalotiopsissp. andDiaporthesp., respectively. The major chemical constituents produced by both crude extracts were identified by gas chromatography-mass spectrometry. Eugenol, myristaldehyde, lauric acid, and caprylic acid were the primary antimicrobial and antioxidant compounds in both crude extracts. This is the first report of eugenol being a biologically active compound ofNeopestalotiopsissp. andDiaporthesp. fungal endophytes. Eugenol has been reported as antimicrobial and antioxidant agents with agronomic applications. Thus the two newly-isolated endophytes may be used for eugenol production, which in turn can be used in a variety of applications.


Author(s):  
Khansa Alshambaty ◽  
Sakina Yagi ◽  
Abdalla A. Elbashir ◽  
Hervé Schohn ◽  
Tzvetomira Tzanova ◽  
...  

2020 ◽  
Vol 23 ◽  
pp. 88-91
Author(s):  
A.A. Ahmadu ◽  
B.A. Lawal ◽  
B. Olanipekun ◽  
A. Udobre ◽  
N. Tsafantakis ◽  
...  

The genus Acacia has been known to be a rich source of many secondary metabolites. This study was carried to isolate chemical constituents present in the stem bark of Acacia auriculiformis. The dichloromethane extract of the stem bark of Acacia auriculiformis was obtained by maceration. The extract obtained was subjected to silica gel column chromatography and preparative TLC. The isolated compounds were identified by spectroscopic analysis. This led to the isolation of ferulic acid ester (I), along with a steroid (II) and a triterpenoid (III). The structure of compound I was established using spectroscopic analysis (UV, IR, NMR and mass spectrometry) and identified to be dodecyl-4-hydroxy-3-methoxy-trans-cinnamate (I), compounds II and III were found to be á-spinasterol and lupenol respectively, based on the comparison of their spectral data NMR and MS with literature report. Compound I is being reported for the first time in the genus Acacia.


2019 ◽  
Vol 1 (4) ◽  
pp. 199-216 ◽  
Author(s):  
Khine Zar Wynn Lae ◽  
Su Swe Su ◽  
Nwet Nwet Win ◽  
Ni Ni Than ◽  
Hla Ngwe

A large number of the plants are claimed to possess the antibiotic properties in the traditional system and are also used extensively by the tribal people throughout the world. It is now mostly thought that nature has given the cure of every disease in one form or another. Plants have been known to cure people from various diseases in Ayurveda. This research focused on the screening of phytochemicals and some biological activities of Phyllanthus albizzioides. The research showed that the ethanol extracts were found to be greater chemical constituents than watery extracts. Among the chemical constituents, steroid compounds were observed in highest amount in ethanol extract and the second highest in flavonoid compounds followed by tannin compounds and pheolic compounds. Furthermore, the ethanol extracts were more effective than the watery extracts in all tested biological activities such as antioxidant, anti-diabetic, cytotoxicity, antimicrobial, antitumor and NO inhibition activities. A cyclohexanone compound was isolated from the chloroform extract of the stem bark of P. albizzioides. The relative structure was determined to be 4,5-dihydroxy-3-methyl-cyclohex-2-enone on the basic of HRESIMS, 1H NMR and 13C NMR spectroscopic analyses, including 2D NMR experiments.


2021 ◽  
Vol 6 (3) ◽  
pp. 189-195
Author(s):  
Hary Widjajanti ◽  
Christina Vivid Handayani ◽  
Elisa Nurnawati

The antibiotic resistance of phatogenic bacteria has become a serious health problem and has encouraged the search for novel and effective antimicrobial metabolites. Meanwhile, endophytic fungi have great potential as a natural source for antimicrobial agents. The endophytic fungi that live in plant tissue produces secondary metabolites which potentially act as an antibacterial compound. The isolation of fungi for antibacterial sources reduces the large amount of plant as a source of antibacterial agents. Hence, this study aims to obtain endophytic fungi isolates from Paederia foetida L. that are capable of producing secondary metabolites as antibacterial, carry out in vitro tests to verify the antibacterial properties of secondary metabolites of the Paederia foetida L. endophytic fungi, and identify the potential of Paederia foetida L. endophytic fungi in producing antibacterial compounds. The antibacterial activity was tested against Escherichia coli ATCC8739 and Staphylococcus aureus ATCC6538 while seven isolates of endophytic fungi that potentially produced antibacterial were obtained from Sembukan (P. foetida L.). The results showed that antibacterial activities of SL1, SL4 and SL6 secondary metabolites against S. aureus ATCC6538 and E. coli ATCC8739 were moderate to strong activities. Furthermore, the Minimum Inhibition Concentration (MIC) of secondary metabolites extract of SL1 against S. aureus ATCC6538 value was 250 ????g/mL while the values of MIC extract of SL4 against S. aureus ATCC6538 and E. coli ATCC8739 were 125 ????g/mL and 250 ????g/mL respectively and MIC extract of SL6 against E. coli ATCC8739 value was 125 ????g/mL. The secondary metabolites extract of SL1 isolate were alkaloid and tannin, SL4 were phenolic and alkaloid while SL6 isolate were alkaloid and terpenoid. Hence, endophytic fungi SL1 isolate was identified as Fusarium sp., SL4 as Dematophora sp., and SL6 isolate as Acremonium sp.


Sign in / Sign up

Export Citation Format

Share Document