scholarly journals Gut Microbiota Profile and Changes in Body Weight in Elderly Subjects with Overweight/Obesity and Metabolic Syndrome

2021 ◽  
Vol 9 (2) ◽  
pp. 346
Author(s):  
Alessandro Atzeni ◽  
Serena Galié ◽  
Jananee Muralidharan ◽  
Nancy Babio ◽  
Francisco José Tinahones ◽  
...  

Gut microbiota is essential for the development of obesity and related comorbidities. However, studies describing the association between specific bacteria and obesity or weight loss reported discordant results. The present observational study, conducted within the frame of the PREDIMED-Plus clinical trial, aims to assess the association between fecal microbiota, body composition and weight loss, in response to a 12-month lifestyle intervention in a subsample of 372 individuals (age 55–75) with overweight/obesity and metabolic syndrome. Participants were stratified by tertiles of baseline body mass index (BMI) and changes in body weight after 12-month intervention. General assessments, anthropometry and biochemical measurements, and stool samples were collected. 16S amplicon sequencing was performed on bacterial DNA extracted from stool samples and microbiota analyzed. Differential abundance analysis showed an enrichment of Prevotella 9, Lachnospiraceae UCG-001 and Bacteroides, associated with a higher weight loss after 12-month of follow-up, whereas in the cross-sectional analysis, Prevotella 2 and Bacteroides were enriched in the lowest tertile of baseline BMI. Our findings suggest that fecal microbiota plays an important role in the control of body weight, supporting specific genera as potential target in personalized nutrition for obesity management. A more in-depth taxonomic identification method and the need of metabolic information encourages to further investigation.

Genes ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 748 ◽  
Author(s):  
Jin-Young Lee ◽  
Mohamed Mannaa ◽  
Yunkyung Kim ◽  
Jehun Kim ◽  
Geun-Tae Kim ◽  
...  

The aim of this study was to investigate differences between the gut microbiota composition in patients with rheumatoid arthritis (RA) and those with osteoarthritis (OA). Stool samples from nine RA patients and nine OA patients were collected, and DNA was extracted. The gut microbiome was assessed using 16S rRNA gene amplicon sequencing. The structures and differences in the gut microbiome between RA and OA were analyzed. The analysis of diversity revealed no differences in the complexity of samples. The RA group had a lower Bacteroidetes: Firmicutes ratio than did the OA group. Lactobacilli and Prevotella, particularly Prevotella copri, were more abundant in the RA than in the OA group, although these differences were not statistically significant. The relative abundance of Bacteroides and Bifidobacterium was lower in the RA group. At the species level, the abundance of certain bacterial species was significantly lower in the RA group, such as Fusicatenibacter saccharivorans, Dialister invisus, Clostridium leptum, Ruthenibacterium lactatiformans, Anaerotruncus colihominis, Bacteroides faecichinchillae, Harryflintia acetispora, Bacteroides acidifaciens, and Christensenella minuta. The microbial properties of the gut differed between RA and OA patients, and the RA dysbiosis revealed results similar to those of other autoimmune diseases, suggesting that a specific gut microbiota pattern is related to autoimmunity.


2021 ◽  
Vol 9 (A) ◽  
pp. 1123-1131
Author(s):  
Nayera E. Hassan ◽  
Sahar A. El-Masry ◽  
Ayat Nageeb ◽  
Mohamed S. El Hussieny ◽  
Aya Khalil ◽  
...  

Background: Studies of the gut microbiota have revealed a great link to obesity and metabolic syndrome (MetS). The aim of this study was to review the dysbiosis of gut microbiota in terms of the components of MetS among a sample of obese Egyptian female patients and to assess current potential gut microbiota targeted therapies for the treatment of MetS. Methods: This study is a cross-sectional study included 82 obese Egyptian women.  All participants were subjected to anthropometric assessment; and  laboratory evaluation of fasting blood sugar (FBS), insulin, C-reactive protein (CRP), lipid profile and insulin resistance (HOMA), in addition to fecal microbiota analysis for Lactobacillus, Bifidobacteria, Firmicutes and Bacteroid. Results: Among obese group with MetS, Firmicutes / Bacteroidetes Ratio was negatively associated with HOMA and positively associated with serum cholesterol and LDL, while lactobacillus was negatively associated with serum cholesterol. Among obese group without MetS, Firmicutes/ Bacteroidetes ratio is negatively associated with WC (central obesity marker) and positively associated with CRP (inflammatory marker), while lactobacillus was positively correlated with FBS and HOMA, and Bifidobacteria was negatively associated with serum cholesterol and LDL.Conclusion: The two beneficial types the Lactobacillus and bifidobacteria supplementation in form of probiotic with therapeutic treatment and decreasing of WChave their important role in controlling and treating hypertension, serum cholesterol and LDL levels, among obese females even with MetS.


2020 ◽  
Vol 150 (7) ◽  
pp. 1859-1870
Author(s):  
Alexandra M Johnstone ◽  
Jennifer Kelly ◽  
Sheila Ryan ◽  
Reyna Romero-Gonzalez ◽  
Hannah McKinnon ◽  
...  

ABSTRACT Background The composition of diets consumed following weight loss (WL) can have a significant impact on satiety and metabolic health. Objective This study was designed to test the effects of including a nondigestible carbohydrate to achieve weight maintenance (WM) following a period of WL. Methods Nineteen volunteers [11 females and 8 males, aged 20–62 y; BMI (kg/m2): 27–42] consumed a 3-d maintenance diet (15%:30%:55%), followed by a 21-d WL diet (WL; 30%:30%:40%), followed by 2 randomized 10-d WM diets (20%:30%:50% of energy from protein:fat:carbohydrate) containing either resistant starch type 3 (RS-WM; 22 or 26 g/d for females and males, respectively) or no RS (C-WM) in a within-subject crossover design without washout periods. The primary outcome, WM after WL, was analyzed by body weight. Secondary outcomes of fecal microbiota composition and microbial metabolite concentrations and gut hormones were analyzed in fecal samples and blood plasma, respectively. All outcomes were assessed at the end of each dietary period. Results Body weight was similar after the RS-WM and C-WM diets (90.7 and 90.8 kg, respectively), with no difference in subjectively rated appetite. During the WL diet period plasma ghrelin increased by 36% (P < 0.001), glucose-dependent insulinotropic polypeptide (GIP) decreased by 33% (P < 0.001), and insulin decreased by 46% (P < 0.001), but no significant differences were observed during the RS-WM and C-WM diet periods. Fasting blood glucose was lower after the RS-WM diet (5.59 ± 0.31 mmol/L) than after the C-WM diet [5.75 ± 0.49 mmol/L; P = 0.015; standard error of the difference between the means (SED): 0.09]. Dietary treatments influenced the fecal microbiota composition (R2 = 0.054, P = 0.031) but not diversity. Conclusions The metabolic benefits, for overweight adults, from WL were maintained through a subsequent WM diet with higher total carbohydrate intake. Inclusion of resistant starch in the WM diet altered gut microbiota composition positively and resulted in lower fasting glucose compared with the control, with no apparent change in appetite. This trial was registered at clinicaltrials.gov as NCT01724411.


2020 ◽  
Vol 6 (1) ◽  
pp. eaax6208 ◽  
Author(s):  
Su-Ling Zeng ◽  
Shang-Zhen Li ◽  
Ping-Ting Xiao ◽  
Yuan-Yuan Cai ◽  
Chu Chu ◽  
...  

Metabolic syndrome (MetS) is intricately linked to dysregulation of gut microbiota and host metabolomes. Here, we first find that a purified citrus polymethoxyflavone-rich extract (PMFE) potently ameliorates high-fat diet (HFD)–induced MetS, alleviates gut dysbiosis, and regulates branched-chain amino acid (BCAA) metabolism using 16S rDNA amplicon sequencing and metabolomic profiling. The metabolic protective effects of PMFE are gut microbiota dependent, as demonstrated by antibiotic treatment and fecal microbiome transplantation (FMT). The modulation of gut microbiota altered BCAA levels in the host serum and feces, which were significantly associated with metabolic features and actively responsive to therapeutic interventions with PMFE. Notably, PMFE greatly enriched the commensal bacterium Bacteroides ovatus, and gavage with B. ovatus reduced BCAA concentrations and alleviated MetS in HFD mice. PMFE may be used as a prebiotic agent to attenuate MetS, and target-specific microbial species may have unique therapeutic promise for metabolic diseases.


2021 ◽  
Author(s):  
Alev Kural ◽  
Imran Khan ◽  
Hakan Seyit ◽  
Tuba R Caglar ◽  
Pınar Toklu ◽  
...  

Aims: Permanent treatment of morbid obesity with medication or diet is nearly impossible. Laparoscopic sleeve gastrectomy (LSG) is becoming a widely accepted treatment option. This study profiled and compared gut microbiota composition before and after LSG. Methods & results: A total of 54 stool samples were collected from 27 morbidly obese individuals before and after LSG. The gut microbiota was profiled with 16S amplicon sequencing. After LSG, patients demonstrated a significant decrease (p < 0.001) in BMI and an increase in bacterial diversity. An increased Firmicutes/Bacteroidetes ratio was also noticed after LSG. The families Prevotellaceae and Veillonellaceae predominated in preoperative samples but were markedly lowered after LSG. A marked increase in Akkermansia, Alistipes, Streptococcus, Ruminococcus and Parabacteroides was observed after LSG. Conclusion: In addition to lowering BMI, LSG remodeled gut microbiota composition.


mSystems ◽  
2019 ◽  
Vol 4 (5) ◽  
Author(s):  
Sonia Tarallo ◽  
Giulio Ferrero ◽  
Gaetano Gallo ◽  
Antonio Francavilla ◽  
Giuseppe Clerico ◽  
...  

ABSTRACT Dysbiotic configurations of the human gut microbiota have been linked to colorectal cancer (CRC). Human small noncoding RNAs are also implicated in CRC, and recent findings suggest that their release in the gut lumen contributes to shape the gut microbiota. Bacterial small RNAs (bsRNAs) may also play a role in carcinogenesis, but their role has been less extensively explored. Here, we performed small RNA and shotgun sequencing on 80 stool specimens from patients with CRC or with adenomas and from healthy subjects collected in a cross-sectional study to evaluate their combined use as a predictive tool for disease detection. We observed considerable overlap and a correlation between metagenomic and bsRNA quantitative taxonomic profiles obtained from the two approaches. We identified a combined predictive signature composed of 32 features from human and microbial small RNAs and DNA-based microbiome able to accurately classify CRC samples separately from healthy and adenoma samples (area under the curve [AUC] = 0.87). In the present study, we report evidence that host-microbiome dysbiosis in CRC can also be observed by examination of altered small RNA stool profiles. Integrated analyses of the microbiome and small RNAs in the human stool may provide insights for designing more-accurate tools for diagnostic purposes. IMPORTANCE The characteristics of microbial small RNA transcription are largely unknown, while it is of primary importance for a better identification of molecules with functional activities in the gut niche under both healthy and disease conditions. By performing combined analyses of metagenomic and small RNA sequencing (sRNA-Seq) data, we characterized both the human and microbial small RNA contents of stool samples from healthy individuals and from patients with colorectal carcinoma or adenoma. With the integrative analyses of metagenomic and sRNA-Seq data, we identified a human and microbial small RNA signature which can be used to improve diagnosis of the disease. Our analysis of human and gut microbiome small RNA expression is relevant to generation of the first hypotheses about the potential molecular interactions occurring in the gut of CRC patients, and it can be the basis for further mechanistic studies and clinical tests.


2019 ◽  
Vol 25 (11) ◽  
pp. e146-e147 ◽  
Author(s):  
Mitsuro Chiba ◽  
Kunio Nakane ◽  
Hitoshi Abe ◽  
Masafumi Komatsu ◽  
Haruhiko Tozawa

Abstract Nonalcoholic fatty liver disease (NAFLD) develops in ulcerative colitis (UC) and Crohn’s disease. However, there is scarce reporting on the onset of UC in patients with NAFLD. A 44-year-old man was diagnosed with UC and referred to us in 2019. His height was 166.0 cm, and body weight was 86.3 kg. The waist circumference was 93.7 cm (normal range <85) and triglyceride was 751 mg/dL. These findings, in addition to hypertension, resulted in a diagnosis of metabolic syndrome. HbA1c was normal. Ultrasonography disclosed severe fatty liver. Nonalcoholic fatty liver disease was diagnosed. He underwent 12 days of educational hospitalization for UC. A lacto-ovo-semi-vegetarian diet (1400 kcal/day), a kind of plant-based diet (PBD), was provided. He lost 4 kg, which was 4.6% of his base body weight. Triglyceride and total cholesterol decreased to the normal ranges. Transaminases and γ-glutamyl transpeptidase also decreased. His body weight decreased further after discharge. Follow-up ultrasonography indicated an improvement in hepatic enlargement. The shear wave velocity decreased from 1.11 to 0.88 m/s. His soft stool became normal stool by 2 months after discharge. Records of his health checkups revealed the presence of metabolic syndrome and abnormal liver function tests already in 2015. Thus, it was concluded that UC developed in a patient with NAFLD in this case. Plant-based diet has already been shown to be effective in inflammatory bowel disease (IBD). In the present case, NAFLD parameters were dramatically improved by PBD. Whether the improvement was due to weight loss per se or due to weight loss with PBD is to be clarified.


Nutrients ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1256
Author(s):  
Brurya Tal ◽  
Jessica Sack ◽  
Marianna Yaron ◽  
Gabi Shefer ◽  
Assaf Buch ◽  
...  

Background: In the treatment of obesity/metabolic syndrome, dietary measures traditionally focus on reducing carbohydrate/fat-related caloric intake. The possibility that changes in potassium consumption may be related to the achieved weight loss has not been previously explored. Methods: Sixty-eight participants, with a mean age of 51.6 ± 11.0 years (F/M—30/38), who fulfilled the ATPIII criteria for the metabolic syndrome (MS) were enrolled into a 1-year intensive multidisciplinary program. Nutritional recommendation consisted of a moderate low calorie/high protein Mediterranean diet. Baseline assessment included clinical and biochemical profiling, and body composition. Nutritional components were registered over 7 days before and at the end of 1 year of treatment. Results: Mean baseline body mass index (BMI) was 35 ± 4 kg/m², which declined by 9.4 ± 0.1% after one year of combined intervention. Linear stepwise regression analysis revealed that 45% of the predicted variance of the % decline in BMI was related to increased consumption of dietary potassium (β = −0.865) and caproic acid (β = −0.423) and reduction in the consumption of dietary vitamin B6 (β = 0.542), calcium (β = 0.335), total carbohydrates (β = 0.239) and total caloric intake (β = 0.238; p < 0.001). Notably, the strongest correlate of the decline in BMI was the increase in dietary potassium intake (β = −0.865). Subjects whose achieved decrease in BMI was above the average (n = 30) increased potassium intake by 25% as compared to an increase in dietary potassium intake of only 3% by those whose decline in BMI was below the average (n = 36; p < 0.05). The change in dietary potassium was related to the percent increase in dietary protein (r = 0.433; p < 0.001). Conclusion: An increase in dietary potassium consumption is a previously unrecognized predictor of the achieved reduction in BMI in a weight-loss-oriented multidisciplinary intervention in obesity/MS. Prospective trials are underway to confirm this post-hoc finding.


2019 ◽  
Vol 7 (1) ◽  
pp. e000659 ◽  
Author(s):  
Shaheen Tomah ◽  
Noor Mahmoud ◽  
Adham Mottalib ◽  
David M Pober ◽  
Mhd Wael Tasabehji ◽  
...  

ObjectiveWe evaluated the relationship between frequency of self-monitoring of blood glucose (SMBG) and body weight, A1C, and cardiovascular risk factors in patients with type 2 diabetes (T2D) and obesity enrolled in a 12-week intensive multidisciplinary weight management (IMWM) program.Research design and methodsWe conducted a retrospective analysis of 42 patients who electronically uploaded their SMBG data over 12 weeks of an IMWM program and divided them into tertiles based on their average frequency of SMBG per day. Mean (range) SMBG frequencies were 2.3 (1.1–2.9) times/day, 3.4 (3–3.9) times/day, and 5 (4–7.7) times/day in the lowest, middle, and highest tertiles, respectively. Anthropometric and metabolic parameters were measured at baseline and after 12 weeks of intervention.ResultsParticipants in the highest tertile achieved a median change (IQR) in body weight of −10.4 kg (−7.6 to −14.4 kg) compared with −8.3 kg (−5.2 to −12.2 kg), and −6.9 kg (−4.2 to −8.9 kg) in the middle and lowest tertiles, respectively (p=0.018 for trend). Participants in the highest tertile had a median change (IQR) in A1C of −1.25% (−0.6 to −3.1%) compared with −0.8% (−0.3% to −2%) and −0.5% (−0.2% to −1.2%) in the middle and lowest tertiles, respectively (p=0.048 for trend). The association between change in body weight and SMBG frequency remained significant after adjusting for age, sex, baseline body mass index, diabetes duration, and use of insulin therapy.ConclusionsIncreased frequency of SMBG during IMWM is associated with significantly better weight loss and improvement of A1C in patients with T2D and obesity. These findings may suggest future clinical recommendations aimed at increasing SMBG frequency to achieve the most favorable outcomes.


Sign in / Sign up

Export Citation Format

Share Document