scholarly journals Bacillus licheniformis and Bacillus subtilis, Probiotics That Induce the Formation of Macrophage Extracellular Traps

2021 ◽  
Vol 9 (10) ◽  
pp. 2027
Author(s):  
Carol M. Romo-Barrera ◽  
Laura E. Castrillón-Rivera ◽  
Alejandro Palma-Ramos ◽  
Jorge I. Castañeda-Sánchez ◽  
Julieta Luna-Herrera

Probiotics are considered living microorganisms that help preserve the health of the host who uses them. Bacillus are a genus of Gram-positive bacteria used as probiotics for animal and human consumption. They are currently distributed in various commercial forms. Two of the species used as probiotics are B. licheniformis and B. subtilis. Macrophages are central cells in the immune response, being fundamental in the elimination of microbial pathogens, for which they use various mechanisms, including the formation of extracellular traps (METs). There have been very few studies carried out on the participation of macrophages in response to the interaction of probiotics of the genus Bacillus with the host. In this work, we used macrophages from the J774A mouse cell line.1, and we found that they are susceptible to infection by the two Bacillus species. However, both species were eliminated as the infection progressed. Using confocal microscopy, we identified the formation of METs from the first hours of infection, which were characterized by the presence of myeloperoxidase (MPO) and citrullinated histone (Hit3Cit). Quantitative data on extracellular DNA release were also obtained; release was observed starting in the first hour of infection. The induction of METs by B. licheniformis caused a significant decrease in the colony-forming units (CFU) of Staphylococcus aureus. The induction of METS by bacteria of the Bacillus genus is a mechanism that participates in controlling the probiotic and potentially pathogenic bacteria such as S. aureus. The induction of METs to control pathogens may be a novel mechanism that could explain the beneficial effects of probiotics of the genus Bacillus.

Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 508
Author(s):  
Aneta Manda-Handzlik ◽  
Krzysztof Fiok ◽  
Adrianna Cieloch ◽  
Edyta Heropolitanska-Pliszka ◽  
Urszula Demkow

Over a decade ago, the formation of neutrophil extracellular traps (NETs) was described as a novel mechanism employed by neutrophils to tackle infections. Currently applied methods for NETs release quantification are often limited by the use of unspecific dyes and technical difficulties. Therefore, we aimed to develop a fully automatic image processing method for the detection and quantification of NETs based on live imaging with the use of DNA-staining dyes. For this purpose, we adopted a recently proposed Convolutional Neural Network (CNN) model called Mask R-CNN. The adopted model detected objects with quality comparable to manual counting—Over 90% of detected cells were classified in the same manner as in manual labelling. Furthermore, the inhibitory effect of GW 311616A (neutrophil elastase inhibitor) on NETs release, observed microscopically, was confirmed with the use of the CNN model but not by extracellular DNA release measurement. We have demonstrated that a modern CNN model outperforms a widely used quantification method based on the measurement of DNA release and can be a valuable tool to quantitate the formation process of NETs.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Senna Staessens ◽  
Olivier François ◽  
Linda Desender ◽  
Peter Vanacker ◽  
Tom Dewaele ◽  
...  

Abstract Background Mechanical removal of a thrombus by thrombectomy can be quite challenging. For reasons that are not fully understood, some thrombi require multiple passes to achieve successful recanalization, whereas other thrombi are efficiently removed in a single pass. Since first pass success is associated with better clinical outcome, it is important to better understand the nature of thrombectomy resistant thrombi. The aim of this study was therefore to characterize the cellular and molecular composition of a thrombus that was very hard to retrieve via mechanical thrombectomy. Case presentation In a patient that was admitted with a right middle cerebral artery M1-occlusion, 11 attempts using various thrombectomy devices and techniques were required for removal of the thrombus. This peculiar case provided a rare opportunity to perform an in-depth histopathological study of a difficult to retrieve thrombus. Thrombus material was histologically analyzed using hematoxylin and eosin, Martius Scarlet Blue stain (red blood cells and fibrin), Feulgen stain (DNA), von Kossa stain (calcifications) and immunohistochemical analysis of von Willebrand factor, platelets, leukocytes and neutrophil extracellular traps. Histological analysis revealed abnormally high amounts of extracellular DNA, leukocytes, von Willebrand factor and calcifications. Extracellular DNA stained positive for markers of leukocytes and NETs, suggesting that a significant portion of DNA is derived from neutrophil extracellular traps. Conclusion In this unique case of a nearly thrombectomy-resistant stroke thrombus, our study showed an atypical composition compared to the common structural features found in ischemic stroke thrombi. The core of the retrieved thrombus consisted of extracellular DNA that colocalized with von Willebrand factor and microcalcifications. These results support the hypothesis that von Willebrand factor, neutrophil extracellular traps and microcalcifications contribute to mechanical thrombectomy resistance. Such information is important to identify novel targets in order to optimize technical treatment protocols and techniques to increase first pass success rates.


Author(s):  
Daniel Elieh Ali Komi ◽  
Wolfgang M. Kuebler

AbstractMast cells (MCs) are critically involved in microbial defense by releasing antimicrobial peptides (such as cathelicidin LL-37 and defensins) and phagocytosis of microbes. In past years, it has become evident that in addition MCs may eliminate invading pathogens by ejection of web-like structures of DNA strands embedded with proteins known together as extracellular traps (ETs). Upon stimulation of resting MCs with various microorganisms, their products (including superantigens and toxins), or synthetic chemicals, MCs become activated and enter into a multistage process that includes disintegration of the nuclear membrane, release of chromatin into the cytoplasm, adhesion of cytoplasmic granules on the emerging DNA web, and ejection of the complex into the extracellular space. This so-called ETosis is often associated with cell death of the producing MC, and the type of stimulus potentially determines the ratio of surviving vs. killed MCs. Comparison of different microorganisms with specific elimination characteristics such as S pyogenes (eliminated by MCs only through extracellular mechanisms), S aureus (removed by phagocytosis), fungi, and parasites has revealed important aspects of MC extracellular trap (MCET) biology. Molecular studies identified that the formation of MCET depends on NADPH oxidase-generated reactive oxygen species (ROS). In this review, we summarize the present state-of-the-art on the biological relevance of MCETosis, and its underlying molecular and cellular mechanisms. We also provide an overview over the techniques used to study the structure and function of MCETs, including electron microscopy and fluorescence microscopy using specific monoclonal antibodies (mAbs) to detect MCET-associated proteins such as tryptase and histones, and cell-impermeant DNA dyes for labeling of extracellular DNA. Comparing the type and biofunction of further MCET decorating proteins with ETs produced by other immune cells may help provide a better insight into MCET biology in the pathogenesis of autoimmune and inflammatory disorders as well as microbial defense.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Benjamin B. A. Raymond ◽  
Cheryl Jenkins ◽  
Lynne Turnbull ◽  
Cynthia B. Whitchurch ◽  
Steven P. Djordjevic

2021 ◽  
Vol 6 (3) ◽  
pp. 110
Author(s):  
Godfred Saviour Kudjo Azaglo ◽  
Mohammed Khogali ◽  
Katrina Hann ◽  
John Alexis Pwamang ◽  
Emmanuel Appoh ◽  
...  

Inappropriate use of antibiotics has led to the presence of antibiotic-resistant bacteria in ambient air. There is no published information about the presence and resistance profiles of bacteria in ambient air in Ghana. We evaluated the presence and antibiotic resistance profiles of selected bacterial, environmental and meteorological characteristics and airborne bacterial counts in 12 active air quality monitoring sites (seven roadside, two industrial and three residential) in Accra in February 2020. Roadside sites had the highest median temperature, relative humidity, wind speed and PM10 concentrations, and median airborne bacterial counts in roadside sites (115,000 CFU/m3) were higher compared with industrial (35,150 CFU/m3) and residential sites (1210 CFU/m3). Bacillus species were isolated in all samples and none were antibiotic resistant. There were, however, Pseudomonas aeruginosa, Escherichia coli, Pseudomonas species, non-hemolytic Streptococci, Coliforms and Staphylococci species, of which six (50%) showed mono-resistance or multidrug resistance to four antibiotics (penicillin, ampicillin, ciprofloxacin and ceftriaxone). There was a positive correlation between PM10 concentrations and airborne bacterial counts (rs = 0.72), but no correlations were found between PM10 concentrations and the pathogenic bacteria nor their antibiotic resistance. We call for the expansion of surveillance of ambient air to other cities of Ghana to obtain nationally representative information.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1242
Author(s):  
Sreejita Ghosh ◽  
Dibyajit Lahiri ◽  
Moupriya Nag ◽  
Ankita Dey ◽  
Tanmay Sarkar ◽  
...  

Bacteria are considered as the major cell factories, which can effectively convert nitrogen and carbon sources to a wide variety of extracellular and intracellular biopolymers like polyamides, polysaccharides, polyphosphates, polyesters, proteinaceous compounds, and extracellular DNA. Bacterial biopolymers find applications in pathogenicity, and their diverse materialistic and chemical properties make them suitable to be used in medicinal industries. When these biopolymer compounds are obtained from pathogenic bacteria, they serve as important virulence factors, but when they are produced by non-pathogenic bacteria, they act as food components or biomaterials. There have been interdisciplinary studies going on to focus on the molecular mechanism of synthesis of bacterial biopolymers and identification of new targets for antimicrobial drugs, utilizing synthetic biology for designing and production of innovative biomaterials. This review sheds light on the mechanism of synthesis of bacterial biopolymers and its necessary modifications to be used as cell based micro-factories for the production of tailor-made biomaterials for high-end applications and their role in pathogenesis.


2020 ◽  
Vol 110 (5) ◽  
pp. 989-998
Author(s):  
Cláudio M. Vrisman ◽  
Loïc Deblais ◽  
Yosra A. Helmy ◽  
Reed Johnson ◽  
Gireesh Rajashekara ◽  
...  

Plant pathogenic bacteria in the genus Erwinia cause economically important diseases, including bacterial wilt of cucurbits caused by Erwinia tracheiphila. Conventional bactericides are insufficient to control this disease. Using high-throughput screening, 464 small molecules (SMs) with either cidal or static activity at 100 µM against a cucumber strain of E. tracheiphila were identified. Among them, 20 SMs (SM1 to SM20), composed of nine distinct chemical moiety structures, were cidal to multiple E. tracheiphila strains at 100 µM. These lead SMs had low toxicity to human cells and honey bees at 100 µM. No phytotoxicity was observed on melon plants at 100 µM, except when SM12 was either mixed with Silwet L-77 and foliar sprayed or when delivered through the roots. Lead SMs did not inhibit the growth of beneficial Pseudomonas and Enterobacter species but inhibited the growth of Bacillus species. Nineteen SMs were cidal to Xanthomonas cucurbitae and showed >50% growth inhibition against Pseudomonas syringae pv. lachrymans. In addition, 19 SMs were cidal or static against Erwinia amylovora in vitro. Five SMs demonstrated potential to suppress E. tracheiphila when foliar sprayed on melon plants at 2× the minimum bactericidal concentration. Thirteen SMs reduced Et load in melon plants when delivered via roots. Temperature and light did not affect the activity of SMs. In vitro cidal activity was observed after 3 to 10 h of exposure to these five SMs. Here, we report 19 SMs that provide chemical scaffolds for future development of bactericides against plant pathogenic bacterial species.


PLoS ONE ◽  
2012 ◽  
Vol 7 (10) ◽  
pp. e46718 ◽  
Author(s):  
Theerthankar Das ◽  
Mike Manefield

Sign in / Sign up

Export Citation Format

Share Document