scholarly journals Effect of 17β-estradiol, Progesterone, and Tamoxifen on Neurons Infected with Toxoplasma gondii In Vitro

2021 ◽  
Vol 9 (10) ◽  
pp. 2174
Author(s):  
María de la Luz Galván Ramírez ◽  
Judith Marcela Dueñas-Jiménez ◽  
Adrián Fernando Gutiérrez-Maldonado ◽  
Laura Rocío Rodríguez Pérez

Toxoplasma gondii (T. gondii) is the causal agent of toxoplasmosis, which produces damage in the central nervous system (CNS). Toxoplasma–CNS interaction is critical for the development of disease symptoms. T. gondii can form cysts in the CNS; however, neurons are more resistant to this infection than astrocytes. The probable mechanism for neuron resistance is a permanent state of neurons in the interface, avoiding the replication of intracellular parasites. Steroids regulate the formation of Toxoplasma cysts in mice brains. 17β-estradiol and progesterone also participate in the control of Toxoplasma infection in glial cells in vitro. The aim of this study was to evaluate the effects of 17β-estradiol, progesterone, and their specific agonists–antagonists on Toxoplasma infection in neurons in vitro. Neurons cultured were pretreated for 48 h with 17β-estradiol or progesterone at 10, 20, 40, 80, or 160 nM/mL or tamoxifen 1 μM/mL plus 17β-estradiol at 10, 20, 40, 80, and 160 nM/mL. In other conditions, the neurons were pretreated during 48 h with 4,4′,4″-(4-propyl-[1H] pyrozole-1,3,5-triyl) trisphenol or 23-bis(4-hydroxyphenyl) propionitrile at 1 nM/mL, and mifepristone 1 µM/mL plus progesterone at 10, 20, 40, 80, and 160 nM/mL. Neurons were infected with 5000 tachyzoites of the T. gondii strain RH. The effect of 17β estradiol, progesterone, their agonists, or antagonists on Toxoplasma infection in neurons was evaluated at 24 and 48 h by immunocytochemistry. T. gondii replication was measured with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction assay. 17β-Estradiol alone or plus tamoxifen reduced infected neurons (50%) compared to the control at 48 h. Progesterone plus estradiol decreased the number of intracellular parasites at 48 h of treatment compared to the control (p < 0.001). 4,4′,4″-(4-propyl-[1H] pyrozole-1,3,5-triyl) trisphenol and 23-bis(4-hydroxyphenyl) propionitrile reduced infected neurons at 48 h of treatment significantly compared to the control (p < 0.05 and p < 0.001, respectively). The Toxoplasma infection process was decreased by the effect of 17β-estradiol alone or combined with tamoxifen or progesterone in neurons in vitro. These results suggest the essential participation of progesterone and estradiol and their classical receptors in the regulation of T. gondii neuron infection.

Author(s):  
Jorge Morales-Montor

Toxoplasmosis is a zoonotic disease caused by the apicomplexa protozoan parasite Toxoplasma gondii. This disease is a health burden, mainly in pregnant women and immunocompromised individuals. Dehydroepiandrosterone (DHEA) has proved to be an important molecule that could drive resistance against a variety of infections, including intracellular parasites such as Plasmodium falciparum and Trypanozoma cruzi, among others. However, to date it has not been explored the role of DHEA on T. gondii. In here, we demonstrated for the first time the toxoplasmicidal effect of DHEA on extracellular tachyzoites. Ultrastructural analysis of treated parasites showed that DHEA alters the cytoskeleton structures, leading to the loss of the organelle structure and organization, as well as the loss of the cellular shape. In vitro treatment with DHEA reduces the viability of extracellular tachyzoites and passive invasion process. 2D SDS-PAGE analysis revealed that in the presence of the hormone a progesterone receptor membrane component (PGRMC) with a cytochrome b5 family heme/steroid binding domain-containing protein was expressed, while the expression of proteins that are essential for motility and virulence was highly reduced. Finally, in vivo DHEA treatment induced a reduction of parasitic load in male, but not in female mice.


2021 ◽  
Vol 9 (3) ◽  
pp. 513
Author(s):  
Saé Muñiz-Hernández ◽  
Angélica Luna-Nophal ◽  
Carmen T. Gómez-De León ◽  
Lenin Domínguez-Ramírez ◽  
Olga A. Patrón-Soberano ◽  
...  

Toxoplasmosis is a zoonotic disease caused by the apicomplexa protozoan parasite Toxoplasma gondii. This disease is a health burden, mainly in pregnant women and immunocompromised individuals. Dehydroepiandrosterone (DHEA) has proved to be an important molecule that could drive resistance against a variety of infections, including intracellular parasites such as Plasmodium falciparum and Trypanozoma cruzi, among others. However, to date, the role of DHEA on T. gondii has not been explored. Here, we demonstrated for the first time the toxoplasmicidal effect of DHEA on extracellular tachyzoites. Ultrastructural analysis of treated parasites showed that DHEA alters the cytoskeleton structures, leading to the loss of the organelle structure and organization as well as the loss of the cellular shape. In vitro treatment with DHEA reduces the viability of extracellular tachyzoites and the passive invasion process. Two-dimensional (2D) SDS-PAGE analysis revealed that in the presence of the hormone, a progesterone receptor membrane component (PGRMC) with a cytochrome b5 family heme/steroid binding domain-containing protein was expressed, while the expression of proteins that are essential for motility and virulence was highly reduced. Finally, in vivo DHEA treatment induced a reduction of parasitic load in male, but not in female mice.


2011 ◽  
Vol 13 (2) ◽  
pp. 215-222 ◽  
Author(s):  
E.J.T Melo ◽  
K.J Vilela ◽  
C.S Carvalho

Melia azedarach (cinnamon) and Azadirachta indica (neem) have a variety of biologically active ingredients against virus, bacteria and protozoan parasites; however, little is known about their action on Toxoplasma gondii intracellular development. Toxoplasma gondii infects all eukaryotic cells, where it establishes and multiplies inside a modified vacuole called the parasitophorous vacuole until the cell ruptures, re-infecting other cells and establishing the infection. There are no efficient chemotherapies for the elimination of T. gondii, minimizing side effects. In this study, we performed in vitro assays with neem and cinnamon aqueous extracts against the intracellular development of T. gondii tachyzoites. After treatment with neem and cinnamon for 24 h, the percentage of infected cells and the number of intracellular parasites drastically decreased. This effect was concentration-dependent. During the incubation of the extracts, progressive morphological and ultrastructure alterations led to intense vesiculation and complete elimination of the parasite from the intracellular medium. However, during the treatment with extracts, no morphological effects were observed in the structure of the host cell. These results suggest that the aqueous extracts of neem and cinnamon were capable of interfering with and eliminating the intracellular development of Toxoplasma gondii.


2021 ◽  
Author(s):  
Sambamurthy Chandrasekaran ◽  
Joshua A Kochanowsky ◽  
Emily F Merritt ◽  
Anita A Koshy

Dogma holds that Toxoplasma gondii persists in neurons because neurons cannot clear intracellular parasites, even with IFN-γ stimulation. As several recent studies questioned this idea, we used primary murine neuronal cultures from wild-type and transgenic mice in combination with IFN-γ stimulation and parental and transgenic parasites to reassess IFN-γ dependent neuronal clearance of intracellular parasites. We found that neurons respond to IFN-γ and that a subset of neurons clear intracellular parasites via immunity regulated GTPases. Whole neuron reconstructions from mice infected with parasites that trigger neuron GFP expression only after full invasion revealed that ~40% of these T. gondii-invaded neurons no longer harbor parasites. Finally, IFN-γ stimulated human stem cell derived neurons showed a ~ 50% decrease in parasite infection rate when compared to unstimulated cultures. This work highlights the capability of human and murine neurons to mount cytokine-dependent anti-T. gondii defense mechanisms in vitro and in vivo.


2015 ◽  
Vol 59 (9) ◽  
pp. 5239-5249 ◽  
Author(s):  
Loyze Paola O. de Lima ◽  
Sergio H. Seabra ◽  
Henrique Carneiro ◽  
Helene S. Barbosa

ABSTRACTToxoplasma gondiiinfection can be severe during pregnancy and in immunocompromised patients. Current therapies for toxoplasmosis are restricted to tachyzoites and have little or no effect on bradyzoites, which are maintained in tissue cysts. Consequently, new therapeutic alternatives have been proposed as the use of atovaquone has demonstrated partial efficacy against tachyzoites and bradyzoites. This work studies the effect of 3-bromopyruvate (3-BrPA), a compound that is being tested against cancer cells, on the infection of LLC-MK2 cells withT. gondiitachyzoites, RH strain. No effect of 3-BrPA on host cell proliferation or viability was observed, but it inhibited the proliferation ofT. gondii. The incubation of cultures with lectinDolichos biflorusagglutinin (DBA) showed the development of cystogenesis, and an ultrastructural analysis of parasite intracellular development confirmed morphological characteristics commonly found in tissue cysts. Moreover, the presence of degraded parasites and the influence of 3-BrPA on endodyogeny were observed. Infected cultures were alternatively treated with a combination of this compound plus atovaquone. This resulted in a 73% reduction in intracellular parasites after 24 h of treatment and a 71% reduction after 48 h; cyst wall formation did not occur in these cultures. Therefore, we conclude that the use of 3-BrPA may serve as an important tool for the study of (i)in vitrocystogenesis; (ii) parasite metabolism, requiring a deeper understanding of the target of action of this compound onT. gondii; (iii) the alternative parasite metabolic pathways; and (iv) the molecular/cellular mechanisms that trigger parasite death.


2021 ◽  
Vol 7 (12) ◽  
pp. 1027
Author(s):  
Rebeca Vázquez-Avendaño ◽  
José Benjamín Rodríguez-Haas ◽  
Hugo Velázquez-Delgado ◽  
Greta Hanako Rosas-Saito ◽  
Eric Edmundo Hernández-Domínguez ◽  
...  

Neofusicoccum parvum belongs to the Botryosphaeriaceae family, which contains endophytes and pathogens of woody plants. In this study, we isolated 11 strains from diseased tissue of Liquidambar styraciflua. Testing with Koch’s postulates—followed by a molecular approach—revealed that N. parvum was the most pathogenic strain. We established an in vitro pathosystem (L. styraciflua foliar tissue–N. parvum) in order to characterize the infection process during the first 16 days. New CysRPs were identified for both organisms using public transcriptomic and genomic databases, while mRNA expression of CysRPs was analyzed by RT-qPCR. The results showed that N. parvum caused disease symptoms after 24 h that intensified over time. Through in silico analysis, 5 CysRPs were identified for each organism, revealing that all of the proteins are potentially secreted and novel, including two of N. parvum proteins containing the CFEM domain. Interestingly, the levels of the CysRPs mRNAs change during the interaction. This study reports N. parvum as a pathogen of L. styraciflua for the first time and highlights the potential involvement of CysRPs in both organisms during this interaction.


2018 ◽  
Vol 63 (3) ◽  
Author(s):  
Qi-Wei Chen ◽  
Kai Dong ◽  
Han-Xiao Qin ◽  
Yi-Kai Yang ◽  
Jin-Lei He ◽  
...  

ABSTRACT Toxoplasma gondii is one of the most widespread obligatory parasitic protozoa and infects nearly all warm-blooded animals, leading to toxoplasmosis. The therapeutic drugs currently administered, like the combination of pyrimethamine and sulfadiazine, show high rates of toxic side effects, and drug resistance is encountered in some cases. Resveratrol is a natural plant extract with multiple functions, such as antibacterial, anticancer, and antiparasite activities. In this study, we evaluated the inhibitory effects of resveratrol on tachyzoites of the Toxoplasma gondii RH strain extracellularly and intracellularly. We demonstrate that resveratrol possesses direct antitoxoplasma activity by reducing the population of extracellularly grown tachyzoites, probably by disturbing the redox homeostasis of the parasites. Moreover, resveratrol was also able to release the burden of cellular stress, promote apoptosis, and maintain the autophagic status of macrophages, which turned out to be regulated by intracellular parasites, thereby functioning indirectly in eliminating T. gondii. In conclusion, resveratrol has both direct and indirect antitoxoplasma effects against RH tachyzoites and may possess the potential to be further evaluated and employed for toxoplasmosis treatment.


1990 ◽  
Vol 28 (2) ◽  
pp. 71 ◽  
Author(s):  
W Y Choi ◽  
H W Nam ◽  
J H Youn ◽  
D J Kim ◽  
W K Kim ◽  
...  
Keyword(s):  

1985 ◽  
Vol 108 (3) ◽  
pp. 297-304 ◽  
Author(s):  
Hidesuke Kaji ◽  
Kazuo Chihara ◽  
Naoto Minamitani ◽  
Hitoshi Kodama ◽  
Tetsuya Kita ◽  
...  

Abstract. The effect of [Asu]eel calcitonin (ECT), an equipotent analogue of eel CT, on prolactin (Prl) secretion was examined in 12 healthy male subjects and in 6 patients with prolactinoma. In healthy subjects, ECT (0.5 μg/kg body weight · h) or saline was infused for 2 h and TRH was injected iv as a bolus of 500 μg at 1 h of ECT or saline administration. ECT did not affect basal Prl levels during 1 h of infusion. TRH caused a significant increase of plasma Prl with peak values of 75.2 ± 11.6 ng/ml in ECT-infused subjects, which did not differ from those infused with saline (68.5 ± 8.3 ng/ml). Next, an iv bolus injection of regular insulin (0.1 U/kg body weight) was followed by an infusion of ECT or saline alone. Plasma Prl peaks after hypoglycaemic stress were significantly lower in ECT-infused subjects than those in saline-injected controls (ECT, 16.5 ± 3.1 vs 33.5 ± 9.6 ng/ml, P < 0.05). In patients with prolactinoma, basal levels of plasma Prl ranging from 42.0–4130 ng/ml failed to change during iv infusion of ECT. Moreover, ECT (10−9–10−6m) did not affect Prl release from prolactinoma tissues perifused in vitro. These findings suggest that ECT may not act directly on the pituitary to modify Prl release. Rather, peripherally administered ECT appears to suppress Prl release via the central nervous system.


Author(s):  
Prithiv K R Kumar

Stem cells have the capacity to differentiate into any type of cell or organ. Stems cell originate from any part of the body, including the brain. Brain cells or rather neural stem cells have the capacitive advantage of differentiating into the central nervous system leading to the formation of neurons and glial cells. Neural stem cells should have a source by editing DNA, or by mixings chemical enzymes of iPSCs. By this method, a limitless number of neuron stem cells can be obtained. Increase in supply of NSCs help in repairing glial cells which in-turn heal the central nervous system. Generally, brain injuries cause motor and sensory deficits leading to stroke. With all trials from novel therapeutic methods to enhanced rehabilitation time, the economy and quality of life is suppressed. Only PSCs have proven effective for grafting cells into NSCs. Neurons derived from stem cells is the only challenge that limits in-vitro usage in the near future.


Sign in / Sign up

Export Citation Format

Share Document