scholarly journals Agate Genesis: A Continuing Enigma

Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 953 ◽  
Author(s):  
Terry Moxon ◽  
Galina Palyanova

This review covers the last 250 years of major scientific contributions on the genesis of agates found in basic igneous host rocks. From 1770 to 1955, the genesis question was frequently limited to discussions based on observations on host rock and agate thick sections. Over the next 25 years, experimental investigations examined phase transformations when silica glass and various forms of amorphous silica were heated to high temperatures. This work demonstrated that the change from the amorphous state into chalcedony was likely to be a multi-stage process. The last 40 years has seen modern scientific instrumentation play a key role in identifying the physical and chemical properties of agate. The outcome of this work has allowed limited evidence-based comment on the conditions of agate formation. There is a general consensus that agates in these basic igneous hosts form at <100 °C. However, the silica source and the nature of the initial deposit remain to be proven.

2008 ◽  
Vol 130 (3) ◽  
Author(s):  
Wang Li-jun ◽  
Guo Chu-wen ◽  
Ryuichiro Yamane

The synthesis and application of nanometer-sized particles have received considerable attention in recent years because of their different physical and chemical properties from those of the bulk materials or individual molecules; however, few experimental investigations on the tribological properties of lubricating oils with and without nanoferromagnetic particles have been performed. This work investigates the tribological properties of Mn0.78Zn0.22Fe2O4 nanoferromagnetic as additive in 46# turbine oil using a four-ball friction and wear tester. It is shown that the 46# turbine oil containing Mn0.78Zn0.22Fe2O4 nanoparticles has much better friction reduction and antiwear abilities than the base oil. The 46# turbine oil doped with 6wt%Mn0.78Zn0.22Fe2O4 nanoparticles show the best tribological properties among the tested oil samples, and PB value is increased by 26%, and the decreasing percentage of wear scar diameter is 25.45% compared to base oil.


Author(s):  
A. V. Nitsenko ◽  
◽  
N. M. Burabaeva ◽  
F. Kh. Tuleutay ◽  
R. S. Seisembaev ◽  
...  

The process experts are concerned in tellurium due to its various physical and chemical properties. The copper anode slime is the main industrial source of tellurium, after processing of that tellurium becomes marketable product and can be sold both in elemental form and tellurium-containing middling. Physical and chemical properties of the tellurium-containing middling of Kazakhmys Smelting LLP produced in 2018 have been studied in this paper. The following methods have been applied during the study: particle size distribution, X-ray phase, X-ray fluorescence and scanning electron probe microscopy. It was found that material is mainly represented by the large pieces of 0.2 mm in size, with moisture content of 15.57 %, bulk density of 0.8 g/cm3 without tapping and 0.88 g/cm3 with tapping, the angle friction - 33°. The elemental composition of the material was determined by X-ray fluorescence method as follows, wt. %: Cu – 33.327; Te – 21.863; Se – 0.766, O – 35.116; S – 5.045. X-ray phase analysis showed that material is mainly in the amorphous state, the following phases had been identified: Cu2.5SO4(OH)3·2H2O, Cu3(SO4)(OH)4, CuSO4(H2O)3. Tellurium-containing phases could not be detected due to strong amorphism. Hydrosulfate forms of copper in the form of flakes have been found on the surface of the middlings by electron probe microscopy. EDS analysis of individual areas showed that patina also contains small amounts of chlorine, selenium and up to 25 % tellurium, in addition to such elements as copper, sulfur and oxygen. Small amounts of sulfur, chromium, selenium and up to 45 % of oxygen has been found in the open area of material, that is specific for its oxidation.


Minerals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 530 ◽  
Author(s):  
Bussweiler

Polymineralic inclusions in megacrysts have been reported to occur in kimberlites worldwide. The inclusions are likely the products of early kimberlite melt(s) which invaded the pre‐existing megacryst minerals at mantle depths (i.e., at pressures ranging from 4 to 6 GPa) and crystallized or quenched upon emplacement of the host kimberlite. The abundance of carbonate minerals (e.g., calcite, dolomite) and hydrous silicate minerals (e.g., phlogopite, serpentine, chlorite) within polymineralic inclusions suggests that the trapped melt was more volatile‐rich than the host kimberlite now emplaced in the crust. However, the exact composition of this presumed early kimberlite melt, including the inventory of trace elements and volatiles, remains to be more narrowly constrained. For instance, one major question concerns the role of accessory alkali‐halogen‐phases in polymineralic inclusions, i.e., whether such phases constitute a common primary feature of kimberlite melt(s), or whether they become enriched in late‐stage differentiation processes. Recent studies have shown that polymineralic inclusions react with their host minerals during ascent of the kimberlite, while being largely shielded from processes that affect the host kimberlite, e.g., the assimilation of xenoliths (mantle and crustal), degassing of volatiles, and secondary alteration. Importantly, some polymineralic inclusions within different megacryst minerals were shown to preserve fresh glass. A major conclusion of this review is that the abundance and mineralogy of polymineralic inclusions are directly influenced by the physical and chemical properties of their host minerals. When taking the different interactions with their host minerals into account, polymineralic inclusions in megacrysts can serve as useful proxies for the multi‐stage origin and evolution of kimberlite melt/magma, because they can (i) reveal information about primary characteristics of the kimberlite melt, and (ii) trace the evolution of kimberlite magma on its way from the upper mantle to the crust.


2019 ◽  
Vol 107 (9-11) ◽  
pp. 833-863 ◽  
Author(s):  
Valeria Pershina

AbstractTheoretical chemical studies demonstrated crucial importance of relativistic effects in the physics and chemistry of superheavy elements (SHEs). Performed, with many of them, in a close link to the experimental research, those investigations have shown that relativistic effects determine periodicities in physical and chemical properties of the elements in the chemical groups and rows of the Periodic Table beyond the 6thone. They could, however, also lead to some deviations from the established trends, so that the predictive power of the Periodic Table in this area may be lost. Results of those studies are overviewed here, with comparison to the recent experimental investigations.


Energies ◽  
2017 ◽  
Vol 10 (4) ◽  
pp. 467 ◽  
Author(s):  
Farhad Hossain ◽  
Jana Kosinkova ◽  
Richard Brown ◽  
Zoran Ristovski ◽  
Ben Hankamer ◽  
...  

1966 ◽  
Vol 24 ◽  
pp. 101-110
Author(s):  
W. Iwanowska

In connection with the spectrophotometric study of population-type characteristics of various kinds of stars, a statistical analysis of kinematical and distribution parameters of the same stars is performed at the Toruń Observatory. This has a twofold purpose: first, to provide a practical guide in selecting stars for observing programmes, second, to contribute to the understanding of relations existing between the physical and chemical properties of stars and their kinematics and distribution in the Galaxy.


Author(s):  
Mehmet Sarikaya ◽  
Ilhan A. Aksay

Biomimetics involves investigation of structure, function, and methods of synthesis of biological composite materials. The goal is to apply this information to the design and synthesis of materials for engineering applications.Properties of engineering materials are structure sensitive through the whole spectrum of dimensions from nanometer to macro scale. The goal in designing and processing of technological materials, therefore, is to control microstructural evolution at each of these dimensions so as to achieve predictable physical and chemical properties. Control at each successive level of dimension, however, is a major challenge as is the retention of integrity between successive levels. Engineering materials are rarely fabricated to achieve more than a few of the desired properties and the synthesis techniques usually involve high temperature or low pressure conditions that are energy inefficient and environmentally damaging.In contrast to human-made materials, organisms synthesize composites whose intricate structures are more controlled at each scale and hierarchical order.


2017 ◽  
pp. 31-43
Author(s):  
Berta Ratilla ◽  
Loreme Cagande ◽  
Othello Capuno

Organic farming is one of the management strategies that improve productivity of marginal uplands. The study aimed to: (1) evaluate effects of various organic-based fertilizers on the growth and yield of corn; (2) determine the appropriate combination for optimum yield; and (3) assess changes on the soil physical and chemical properties. Experiment was laid out in Randomized Complete Block Design, with 3 replications and 7 treatments, namely; T0=(0-0-0); T1=1t ha-1 Evans + 45-30-30kg N, P2O5, K2O ha-1; T2=t ha-1 Wellgrow + 45-30-30kg N, P2O5, K2O ha-1; T3=15t ha-1 chicken dung; T4=10t ha-1 chicken dung + 45-30-30kg N, P2O5, K2O ha-1; T5=15t ha-1 Vermicast; and T6=10t ha-1 Vermicast + 45-30-30kg N, P2O5, K2O ha-1. Application of organic-based fertilizers with or without inorganic fertilizers promoted growth of corn than the control. But due to high infestation of corn silk beetle(Monolepta bifasciata Horns), its grain yield was greatly affected. In the second cropping, except for Evans, any of these fertilizers applied alone or combined with 45-30-30kg N, P2O5, K2O ha-1 appeared appropriate in increasing corn earyield. Soil physical and chemical properties changed with addition of organic fertilizers. While bulk density decreased irrespective of treatments, pH, total N, available P and exchangeable K generally increased more with chicken dung application.


Sign in / Sign up

Export Citation Format

Share Document