scholarly journals A Novel Open-System Method for Synthesizing Muscovite from a Biotite-rich Coal Tailing

Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 269
Author(s):  
Hamid Khoshdast ◽  
Vahideh Shojaei ◽  
Ahmad Hassanzadeh ◽  
Tomasz Niedoba ◽  
Agnieszka Surowiak

According to the wide application of muscovite in various industries, many studies have focused on its fabrication. However, the process of its synthesis faces long-standing challenges mainly related to the elevated temperature and pressure ambient, together with time and cost-consuming processes. This research work aims at synthesizing muscovite through a straightforward and direct wet thermal oxidation of an ash sample produced from biotite-rich coal tailings. For this purpose, the lab ash powder was mixed with 35% H2O2 at the room temperature of 25 °C while stirring at 480 rpm. Then, the temperature was gradually raised to 80 °C, and the process ran for 180 min. The dried product and the raw lab ash were characterized by the X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR) methods. The XRD results indicated that the biotite was efficiently converted to the muscovite as the number of relevant peaks was significantly increased in the synthesized product’s pattern. The SEM and FTIR results showed some structural changes, from pseudo-hexagonal in the starting material to amorphous pseudo-crystals in the synthetic product, as well as the growth of the product’s crystals. The crystallographic study and lattice parameter calculations revealed that the starting material and product peaks matched to International Center for Diffraction Data (ICDD reference patterns of 01-080-1110 and 01-082-2450 for the biotite and the muscovite, respectively. Moreover, the calculation of the mean crystallite size of the starting material and treated samples were obtained as 55 nm and 87 nm, respectively. Finally, according to the characterization properties of synthesized muscovite, the presented method was introduced as an effective technique. Therefore, we highly suggest it for further consideration and its development in future investigations.

SPIN ◽  
2017 ◽  
Vol 07 (02) ◽  
pp. 1750002 ◽  
Author(s):  
M. Hemmous ◽  
A. Guittoum

We have studied the effect of the silicon concentration on the structural and hyperfine properties of nanostructured Fe[Formula: see text]Six powders ([Formula: see text], 20, 25 and 30[Formula: see text]at.%) prepared by mechanical alloying. The X-ray diffraction (XRD) studies indicated that after 72[Formula: see text]h of milling, the solid solution bcc-[Formula: see text]-Fe(Si) is formed. The grain sizes, [Formula: see text]D[Formula: see text] (nm), decreases with increasing Si concentration and reaches a minimum value of 11[Formula: see text]nm. We have found that the lattice parameter decreases with increasing Si concentration. The changes in values are attributed to the substitutional dissolution of Si in Fe matrix. From the adjustment of Mössbauer spectra, we have shown that the mean hyperfine magnetic field, [Formula: see text]H[Formula: see text] (T), decreases with increasing Si concentration. The substitutional dependence of [Formula: see text]H[Formula: see text] (T) can be attributed to the effect of p electrons Si influencing electrons d of Fe.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7624
Author(s):  
Kunyang Fan ◽  
Wenhuang Jiang ◽  
Jesús Ruiz-Hervias ◽  
Carmen Baudín ◽  
Wei Feng ◽  
...  

A series of Al2O3–Al2TiO5 ceramic composites with different Al2TiO5 contents (10 and 40 vol.%) fabricated at different sintering temperatures (1450 and 1550 °C) was studied in the present work. The microstructure, crystallite structure, and through-thickness residual stress of these composites were investigated by scanning electron microscopy, X-ray diffraction, time-of-flight neutron diffraction, and Rietveld analysis. Lattice parameter variations and individual peak shifts were analyzed to calculate the mean phase stresses in the Al2O3 matrix and Al2TiO5 particulates as well as the peak-specific residual stresses for different hkl reflections of each phase. The results showed that the microstructure of the composites was affected by the Al2TiO5 content and sintering temperature. Moreover, as the Al2TiO5 grain size increased, microcracking occurred, resulting in decreased flexure strength. The sintering temperatures at 1450 and 1550 °C ensured the complete formation of Al2TiO5 during the reaction sintering and the subsequent cooling of Al2O3–Al2TiO5 composites. Some decomposition of AT occurred at the sintering temperature of 1550 °C. The mean phase residual stresses in Al2TiO5 particulates are tensile, and those in the Al2O3 matrix are compressive, with virtually flat through-thickness residual stress profiles in bulk samples. Owing to the thermal expansion anisotropy in the individual phase, the sign and magnitude of peak-specific residual stress values highly depend on individual hkl reflection. Both mean phase and peak-specific residual stresses were found to be dependent on the Al2TiO5 content and sintering temperature of Al2O3–Al2TiO5 composites, since the different developed microstructures can produce stress-relief microcracks. The present work is beneficial for developing Al2O3–Al2TiO5 composites with controlled microstructure and residual stress, which are crucial for achieving the desired thermal and mechanical properties.


2011 ◽  
Vol 311-313 ◽  
pp. 392-395 ◽  
Author(s):  
Kun Yu Shi ◽  
Tao Shen ◽  
Li Hong Xue ◽  
Chun Hao Chen ◽  
You Wei Yan

The nanocrystalline Cu-5wt.%Cr alloy powders were prepared by mechanical alloying. The structural changes were characterized by X-ray diffraction (XRD) technique. A thermodynamic analysis was carried out to predict the change in the solubility limit of this system. It was found that the energy resulting from the MA process is sufficient to increase the solid solubility of immiscible Cr-Cu system. The solid solubility may be extended up to 5 wt.% Cr in Cu after 20 h milling. The formation of the supersaturated solid solution leads to the decrease of Cu lattice parameter. However, it decomposes with the further increase of the milling time, which leads to the increase of Cu lattice parameter.


2018 ◽  
Vol 54 ◽  
pp. 136-145
Author(s):  
A. El Mohri ◽  
M. Zergoug ◽  
K. Taibi ◽  
M. Azzaz

Nanocrystalline Fe90Mg10 alloy samples were prepared by mechanical alloying process using planetary high energy ball mill. The prepared powders were characterized using differential thermal analysis (DTA), X-ray diffraction technique (XRD) at high temperature, transmission electron microscopy (TEM), and the vibrating sample magnetometer (VSM). Obtained results are discussed according to milling time. XRD at high temperature results also indicated that when the milling time increases, the lattice parameter and the mean level of grain size increase, whereas the microstrains decrease. The result of the observation by the TEM of the Fe-Mg powders prepared in different milling time, coercive fields derived and Saturation magnetization derived from the hysteresis curves in high temperature are discussed as a function of milling time.


2014 ◽  
Vol 1013 ◽  
pp. 91-96
Author(s):  
Olga Perevalova ◽  
Elena Konovalova ◽  
Nina Koneva ◽  
Konstantin Ivanov ◽  
Eduard Kozlov

By X-ray diffraction and scanning electron microscopy using the method of back-scattered electrons the parameters of the solid solution (the lattice parameter and the mean-square displacement of atoms) and the grain boundary ensembles in the alloy Pd3Fe with the superstructure L12 have been investigated depending on the degree of the long-range atomic order. The relationship between the proportion of the twins Σ3 in the spectrum of special boundaries and the mean-square displacement of atoms was detected.


2013 ◽  
Vol 380-384 ◽  
pp. 4303-4306
Author(s):  
Ya Jing Zhang ◽  
Li Xin Li

The structure and thermal parameters of biomedical used Ni20Pd80 alloy were studied using X-ray diffraction (XRD) technique. The diffraction experiments performed in the temperature range of 308-1100 K revealed that the alloy forms a face centered cubic (fcc) A1-type structure. The temperature dependence of the lattice parameters was investigated using the Bragg line displacement method shows that the lattice parameter increases with the increase of temperature. The mean linear thermal expansion (MLTE (%)), coefficient of thermal expansion (CTE) α, the characteristic Debye temperature (ΘD) and mean square amplitudes of vibration were determined from the XRD data. The value of Debye temperature was found to be 253 K. It was found that temperature factor was independent of the static displacements.


Author(s):  
William F. Tivol ◽  
Murray Vernon King ◽  
D. F. Parsons

Feasibility of isomorphous substitution in electron diffraction is supported by a calculation of the mean alteration of the electron-diffraction structure factors for hemoglobin crystals caused by substituting two mercury atoms per molecule, following Green, Ingram & Perutz, but with allowance for the proportionality of f to Z3/4 for electron diffraction. This yields a mean net change in F of 12.5%, as contrasted with 22.8% for x-ray diffraction.Use of the hydration chamber in electron diffraction opens prospects for examining many proteins that yield only very thin crystals not suitable for x-ray diffraction. Examination in the wet state avoids treatments that could cause translocation of the heavy-atom labels or distortion of the crystal. Combined with low-fluence techniques, it enables study of the protein in a state as close to native as possible.We have undertaken a study of crystals of rat hemoglobin by electron diffraction in the wet state. Rat hemoglobin offers a certain advantage for hydration-chamber work over other hemoglobins in that it can be crystallized from distilled water instead of salt solutions.


2016 ◽  
Vol 12 (1) ◽  
pp. 4141-4144
Author(s):  
Garima Jain

Polycrystalline films of tin telluride were prepared by sintering technique. The structural investigation of the films with different thicknesses enables to determine lattice parameter, crystallite size and strain existing in the films. The XRD traces showed that strain was tensile in nature. The crystallite size increases with thickness while strain decreases. Higher the value of tensile strain, larger is the lattice constant. The optical energy gap shows a descending nature with increasing strain and so with the lattice constant. Such an attempt made to delve into interdependence of basic physical quantities helps to explore the properties of SnTe and utilize it as an alternative to heavy metal chalcogenides in various technological applications.  


2021 ◽  
Vol 56 (19) ◽  
pp. 11237-11247 ◽  
Author(s):  
Johannes Pötschke ◽  
Manisha Dahal ◽  
Mathias Herrmann ◽  
Anne Vornberger ◽  
Björn Matthey ◽  
...  

AbstractDense (Hf, Ta, Nb, Ti, V)C- and (Ta, Nb, Ti, V, W)C-based high-entropy carbides (HEC) were produced by three different sintering techniques: gas pressure sintering/sinter–HIP at 1900 °C and 100 bar Ar, vacuum sintering at 2250 °C and 0.001 bar as well as SPS/FAST at 2000 °C and 60 MPa pressure. The relative density varied from 97.9 to 100%, with SPS producing 100% dense samples with both compositions. Grain size measurements showed that the substitution of Hf with W leads to an increase in the mean grain size of 5–10 times the size of the (Hf, Ta, Nb, Ti, V,)C samples. Vacuum-sintered samples showed uniform grain size distribution regardless of composition. EDS mapping revealed the formation of a solid solution with no intermetallic phases or element clustering. X-ray diffraction analysis showed the structure of mostly single-phase cubic high-entropy carbides. Hardness measurements revealed that (Hf, Ta, Nb, Ti, V)C samples possess higher hardness values than (Ta, Nb, Ti, V, W)C samples.


2009 ◽  
Vol 73 (6) ◽  
pp. 1027-1032 ◽  
Author(s):  
F. Nestola ◽  
A. Guastoni ◽  
L. Bindi ◽  
L. Secco

AbstractDalnegroite, ideally Tl4Pb2(As12Sb8)Σ20S34, is a new mineral from Lengenbach, Binntal, Switzerland. It occurs as anhedral to subhedral grains up to 200 μm across, closely associated with realgar, pyrite, Sb-rich seligmanite in a gangue of dolomite. Dalnegroite is opaque with a submetallic lustre and shows a brownish-red streak. It is brittle; the Vickers hardness (VHN25) is 87 kg mm-2(range: 69—101) (Mohs hardness ∼3—3½). In reflected light, dalnegroite is highly bireflectant and weakly pleochroic, from white to a slightly greenish-grey. In cross-polarized light, it is highly anisotropic with bluish to green rotation tints and red internal reflections.According to chemical and X-ray diffraction data, dalnegroite appears to be isotypic with chabournéite, Tl5-xPb2x(Sb,As)21-xS34. It is triclinic, probable space groupP1, witha= 16.217(7) Å,b= 42.544(9) Å,c= 8.557(4) Å, α = 95.72(4)°, β = 90.25(4)°, γ = 96.78(4)°,V= 5832(4) Å3,Z= 4.The nine strongest powder-diffraction lines [d(Å) (I/I0) (hkl)] are: 3.927 (100) (10 0); 3.775 (45) (22); 3.685 (45) (60); 3.620 (50) (440); 3.124 (50) (2); 2.929 (60) (42); 2.850 (70) (42); 2.579 (45) (02); 2.097 (60) (024). The mean of 11 electron microprobe analyses gave elemental concentrations as follows: Pb 10.09(1) wt.%, Tl 20.36(1), Sb 23.95(1), As 21.33(8), S 26.16(8), totalling 101.95 wt.%, corresponding to Tl4.15Pb2.03(As11.86Sb8.20)S34. The new mineral is named for Alberto Dal Negro, Professor in Mineralogy and Crystallography at the University of Padova since 1976.


Sign in / Sign up

Export Citation Format

Share Document