scholarly journals Effect of pH Cycling and Zinc Ions on Calcium and Magnesium Carbonate Formation in Saline Fluids at Low Temperature

Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 723
Author(s):  
Veerle Vandeginste

The formation of dolomite is very challenging in the laboratory under ambient conditions due to kinetic inhibition. The goal of this study was to test the impact of pH cycling and zinc ions on the formation of magnesium-rich carbonates in saline fluids at a low temperature. Batch reactor experiments were conducted in two series of pH cycling experiments, one without and one with zinc ions, at 43 °C. The results after 36 diel pH cycles indicate a reaction product assemblage of hydromagnesite, aragonite and magnesite in the experiments without zinc ions, and of magnesite and minor aragonite in the experiments with zinc ions. The presence of zinc ions leads to a decrease in the pH in the acid phase of the cycling experiments, which likely plays a role in the reaction product assemblage. Moreover, the hydration enthalpy and other specific ion effects could be additional factors in the formation of magnesium-rich carbonate. The results show a clear evolution towards increasing incorporation of magnesium in the carbonate phase with cycle number, especially in the experiments with zinc ions, reflecting a ripening process that is enhanced by pH cycling. Hence, repeated pH cycling did not lead to more ordered dolomite (from protodolomite), but rather to the formation of magnesite with 92 mol% MgCO3 after 36 cycles, even though geochemical models indicate a higher saturation index for dolomite than for magnesite.

Author(s):  
Allen C. Smith ◽  
Philip R. Vormelker ◽  
Glenn K. Chapman ◽  
Greg D. Creech ◽  
Jamil Khan ◽  
...  

Cane fiberboard is widely used as the impact absorption and thermal insulation material in overpacks for radioactive materials shipping packages. The study described here investigated the properties of cane fiberboard assemblies under environmental conditions important to radioactive materials packaging applications. Tests were performed for loading perpendicular and parallel to the planes of the fiberboard sheets for both slow and impact strain rates, at high and low temperature and at high and low humidity. Under high temperature and high humidity conditions, the stress/strain response of the assemblies was close to the response at ambient conditions. However, for low temperature and impact strain rate conditions for specimens loaded parallel to the planes of the fiberboard sheets, an initial stress spike was found. The cause of this transient, high, initial stress was determined to be the stiffening effect of the glue layers used to bond the fiberboard sheets together.


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Przemysław Snopiński ◽  
Mariusz Król ◽  
Marek Pagáč ◽  
Jana Petrů ◽  
Jiří Hajnyš ◽  
...  

AbstractThis study investigated the impact of the equal channel angular pressing (ECAP) combined with heat treatments on the microstructure and mechanical properties of AlSi10Mg alloys fabricated via selective laser melting (SLM) and gravity casting. Special attention was directed towards determining the effect of post-fabrication heat treatments on the microstructural evolution of AlSi10Mg alloy fabricated using two different routes. Three initial alloy conditions were considered prior to ECAP deformation: (1) as-cast in solution treated (T4) condition, (2) SLM in T4 condition, (3) SLM subjected to low-temperature annealing. Light microscopy, transmission electron microscopy, X-ray diffraction line broadening analysis, and electron backscattered diffraction analysis were used to characterize the microstructures before and after ECAP. The results indicated that SLM followed by low-temperature annealing led to superior mechanical properties, relative to the two other conditions. Microscopic analyses revealed that the partial-cellular structure contributed to strong work hardening. This behavior enhanced the material’s strength because of the enhanced accumulation of geometrically necessary dislocations during ECAP deformation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andreas Kiontke ◽  
Mehrzad Roudini ◽  
Susan Billig ◽  
Amarghan Fakhfouri ◽  
Andreas Winkler ◽  
...  

AbstractMass spectrometry coupled to low-temperature plasma ionization (LTPI) allows for immediate and easy analysis of compounds from the surface of a sample at ambient conditions. The efficiency of this process, however, strongly depends on the successful desorption of the analyte from the surface to the gas phase. Whilst conventional sample heating can improve analyte desorption, heating is not desirable with respect to the stability of thermally labile analytes. In this study using aromatic amines as model compounds, we demonstrate that (1) surface acoustic wave nebulization (SAWN) can significantly improve compound desorption for LTPI without heating the sample. Furthermore, (2) SAWN-assisted LTPI shows a response enhancement up to a factor of 8 for polar compounds such as aminophenols and phenylenediamines suggesting a paradigm shift in the ionization mechanism. Additional assets of the new technique demonstrated here are (3) a reduced analyte selectivity (the interquartile range of the response decreased by a factor of 7)—a significant benefit in non-targeted analysis of complex samples—and (4) the possibility for automated online monitoring using an autosampler. Finally, (5) the small size of the microfluidic SAWN-chip enables the implementation of the method into miniaturized, mobile LTPI probes.


Author(s):  
Rainer Kurz ◽  
Grant Musgrove ◽  
Klaus Brun

Fouling of compressor blades is an important mechanism leading to performance deterioration in gas turbines over time. Experimental and simulation data are available for the impact of specified amounts of fouling on performance, as well as the amount of foulants entering the engine for defined air filtration systems and ambient conditions. This study provides experimental data on the amount of foulants in the air that actually stick to a blade surface for different conditions of the blade surface. Quantitative results both indicate the amount of dust as well as the distribution of dust on the airfoil, for a dry airfoil, as well as airfoils that were wet from ingested water, as well as different types of oil. The retention patterns are correlated with the boundary layer shear stress. The tests show the higher dust retention from wet surfaces compared to dry surfaces. They also provide information about the behavior of the particles after they impact on the blade surface, showing that for a certain amount of wet film thickness, the shear forces actually wash the dust downstream, and off the airfoil. Further, the effect of particle agglomeration of particles to form larger clusters was observed, which would explain the disproportional impact of very small particles on boundary layer losses.


2010 ◽  
Vol 66 (6) ◽  
pp. 603-614 ◽  
Author(s):  
Matthias Weil ◽  
Berthold Stöger

The structures of the 3d divalent transition-metal diarsenates M 2As2O7 (M = Mn, Co, Ni, Zn) can be considered as variants of the monoclinic (C2/m) thortveitite [Sc2Si2O7] structure type with a ≃ 6.7, b ≃ 8.5, c ≃ 4.7 Å, α ≃ 90, β ≃ 102, γ ≃ 90° and Z = 2. Co2As2O7 and Ni2As2O7 are dimorphic. Their high-temperature (β) polymorphs adopt the thortveitite aristotype structure in C2/m, whereas their low-temperature (α) polymorphs are hettotypes and crystallize with larger unit cells in the triclinic crystal system in space groups P\bar 1 and P1, respectively. Mn2As2O7 undergoes no phase transition and likewise adopts the thortveitite structure type in C2/m. Zn2As2O7 has an incommensurately modulated crystal structure [C2/m(α,0,γ)0s] with q = [0.3190 (1), 0, 0.3717 (1)] at ambient conditions and transforms reversibly to a commensurately modulated structure with Z = 12 (I2/c) below 273 K. The Zn phase resembles the structures and phase transitions of Cr2P2O7. Besides descriptions of the low-temperature Co2As2O7, Ni2As2O7 and Zn2As2O7 structures as five-, three- and sixfold superstructures of the thortveitite-type basic structure, the superspace approach can also be applied to descriptions of all the commensurate structures. In addition to the ternary M 2As2O7 phases, the quaternary phase (Ni,Co)2As2O7 was prepared and structurally characterized. In contrast to the previously published crystal structure of the mineral petewilliamsite, which has the same idealized formula and has been described as a 15-fold superstructure of the thortveitite-type basic structure in space group C2, synthetic (Ni,Co)2As2O7 can be considered as a solid solution adopting the α-Ni2As2O7 structure type. Differences of the two structure models for (Ni,Co)2As2O7 are discussed.


2011 ◽  
Vol 332-334 ◽  
pp. 27-30 ◽  
Author(s):  
Mei Niu ◽  
Zi Lu Wu ◽  
Jin Ming Dai ◽  
Wen Sheng Hou ◽  
Sheng Shi ◽  
...  

Wool fiber was firstly pretreated by nano-SiO2/Ag antibacterial agent, and then dyed with an acid dyes at low temperature by ultrasonic dyeing. Many factors had an important influence on the dye ability and the antibacterial behavior during the dyeing process of antibacterial wool fiber. The experimental results indicate that the dye-takeup rates of antibacterial wool fiber were enhanced with the increase of the concentration of nano-SiO2/Ag, the dyeing temperature, the dyeing time and the ultrasonic frequency (less than 60Hz). However, the antibacterial ratios of wool fiber were declined in the impact of these factors other than the concentration of antibacterial agent.


1993 ◽  
Vol 333 ◽  
Author(s):  
William E. Glassley ◽  
Carol J. Bruton ◽  
William L. Bourcier

ABSTRACTThermally induced flow of liquid water and water vapor at the potential repository site at Yucca Mountain, Nevada, will extend hundreds of meters away from the repository edge. The resultant transfer of heat and mass will sufficiently perturb the ambient conditions such that a variety of mineralogical and chemical reactions will occur that may modify hydrological properties. The consequences of this “coupling” of geochemical and hydrological processes will vary through time, and will occur to different degrees in four regimes (T < Tboiling; T = Tboiling; T > T boiling; cooling) that will develop within the repository block. The dominant processes in the regimes differ, and reflect the local balance between: 1) kinetics and equilibrium; 2) dissolution and precipitation; 3) evaporation and boiling; and 4) fluid flow in matrix and fractures. Simulations were conducted of the evolution of these regimes, using laboratory derived kinetics and thermodynamic data, and site specific mineralogical and hydrological properties. These simulations identify regions where chemical and mineralogical equilibrium is likely to be achieved, and where net changes in hydrological properties will be concentrated. Tests of the results of these simulations have been initiated using field data from the Taupo Volcanic Zone, New Zealand. A preliminary series of calculations suggest that relative changes in porosity of as much as ± 20% to 30% may be possible for rocks with an initial porosity of 10%.


2009 ◽  
Vol 145-146 ◽  
pp. 177-180 ◽  
Author(s):  
Roger Loo ◽  
Andriy Hikavyy ◽  
Frederik E. Leys ◽  
Masayuki Wada ◽  
Kenichi Sano ◽  
...  

Several device concepts have been further evaluated after the successful implementation of epitaxial Si, SiGe and/or Si:C layers. Most of the next device generations will put limitations on the thermal budget of the deposition processes without making concessions on the epitaxial layer quality. In this work we address the impact of ex-situ wet chemical cleans and in-situ pre-epi bake steps, which are required to obtain oxide free Si surfaces for epitaxial growth. The combination of defect measurements, Secondary Ion Mass Spectroscopy, photoluminescence, lifetime measurements, and electrical diode characterization gives a very complete overview of the performance of low-temperature pre-epi cleaning methods. Contamination at the epi/substrate interface cannot be avoided if the pre-epi bake temperature is too low. This interface contamination is traceable by the photoluminescence and lifetime measurements. It may affect device characteristics by enhanced leakage currents and eventually by yield issues due to SiGe layer relaxation or other defect generation. A comparison of state of the art 200 mm and 300 mm process equipment indicates that for the same thermal budgets the lowest contamination levels are obtained for the 300 mm equipments.


Author(s):  
Natalija Koprivanac ◽  
Dinko Vujevic

Organic synthetic dyes are widely produced and used today. Significant losses of organic and inorganic content occurs during the manufacturing and application of dyes and its discharge in the effluent presents a threat to the eco-systems due to general toxicity and resistance to destruction by biological treatment methods. Particularly azo dyes are of special environmental concern due to their degradation products such as aromatic amines, which are considered highly carcinogenic. So, dyes have to be removed from coloured wastewater before discharge. However, traditional treatment methods (adsorption, coagulation/flocculation) mainly transfer the contaminants from wastewater to secondary waste. Therefore, advanced oxidation processes seem to be sustainable and clean technology to decolorize and minimize organic dyes content from wastewater. In this paper, degradation of an azo dye C.I. Direct Orange 39 (DO39) using Fenton type processes (Fe2+/H2O2, Fe3+/H2O2and Fe0/H2O2) has been performed. The molar ratio of Fenton’s type reagents has been varied in the range of 1 : 5 up to 1 : 50 at 0.5 and 1.0 mM concentrations of iron salts and iron powder. Experiments have been conducted for two hours in a batch reactor with magnetic stirring, ambient conditions and pH 3. The process efficiency and formation of degradation by-products have been determined on the basis of results obtained by UV/VIS spectrophotometric, total organic carbon (TOC) and high performance liquid chromatography (HPLC) analyses. The optimal Fenton and Fenton ``like" processes parameters have been applied in the photo reactor, too. It has been observed that simultaneous utilization of UV irradiation with Fenton's and Fenton ``like" reagents increases the degradation of DO39 dye. Degradation of the dye in dilute aqueous solution follows pseudo-first order kinetics. The maximal decolourization of 20 mg L-1 DO39 in water of 93.2% and TOC degradation of 76.9% were obtained using Fe3+/H2O2= 1 : 5 molar ratio. The results indicate that the treatment of DO39 dye wastewater with UV/Fe3 +/H2O2 system was found to be the most efficient.


Sign in / Sign up

Export Citation Format

Share Document