scholarly journals Recent Studies on Cyclic 1,7-Diarylheptanoids: Their Isolation, Structures, Biological Activities, and Chemical Synthesis

Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3107 ◽  
Author(s):  
Yurngdong Jahng ◽  
Jae Gyu Park

Diarylheptanoids are a family of plant secondary metabolites with a 7 carbon skeleton possessing two phenyl rings at the 1- and 7-positions. They can be subdivided into acyclic and cyclic diarylheptanoids where the latter are further divided into meta,meta-bridged biphenyls ([7.0]metacyclophanes) and meta,para-bridged diphenyl ether heptanoids (oxa[7.1]metapara-cyclophanes). Since the isolation of curcumin from the rhizomes of turmeric (Curcuma longa) in 1815 which was named curcumin, a variety of diarylheptanoids have been isolated from a number of plant families such as Aceraceae, Actinidiaceae, Betulaceae, Burseraceae, Casuarinaceae, Juglandaceae, Leguminosae, Myricaceae, and Zingiberaceae. Earlier studies on these diarylheptanoids have been summarized on several occasions, of which the main themes only focus on isolation, structure elucidation, and the biological properties of linear types. Only a few have covered cyclic diarylheptanoids and their chemical synthesis has been covered lastly by Zhu et al. in 2000. The present paper has, therefore, covered recent progress in cyclic diarylheptanoids focusing on the isolation, structural and biological features, and chemical synthesis.

Planta Medica ◽  
2021 ◽  
Author(s):  
Jerald Nair ◽  
Johannes Van Staden

The Amaryllidaceae features prominently amongst bulbous flowering plant families. Accommodating about a third of its species, South Africa affords a sound basis for Amaryllidaceae plant research. Boophone, Nerine, Crossyne, Clivia, Cryptostephanus, Haemanthus and Scadoxus have been well-represented in such endeavors. The account herein summarizes the studies undertaken between 2013-2020 on these genera in regards to their chemical and biological characteristics. A total of 136 compounds comprising 63 alkaloids and 73 non-alkaloid entities were described during this period from eighteen members of the title genera. The alkaloids were reflective of the structural diversity found in eight isoquinoline alkaloid groups of the Amaryllidaceae. Of these, the crinane (29 compounds), lycorane and homolycorine (11 compounds each) groups were the most-represented. The non-alkaloid substances were embracive of the same number of unrelated groups including, acids, phenolics, flavonoids and triterpenoids. A wide variety of assays were engaged to ascertain the biological activities of the isolated compounds, notably in regards to cancer and motorneuron-related diseases. There were also attempts made to determine the antimicrobial, anti-inflammatory and antioxidant effects of some of the substances. New information has also emerged on the herbicidal, insecticidal and plant growth regulatory effects of selected alkaloid principles. Coupled to the biological screening measures were in instances probes made to establish the molecular basis to some of the activities, particularly in relation to cancer and Parkinsonʹs disease.


2021 ◽  
Vol 14 (12) ◽  
pp. 1274
Author(s):  
Jinyun Chen ◽  
Sunyan Lv ◽  
Jia Liu ◽  
Yanlei Yu ◽  
Hong Wang ◽  
...  

1,3-Oxazole chemicals are a unique class of five-membered monocyclic heteroarenes, containing a nitrogen atom and an oxygen. These alkaloids have attracted extensive attention from medicinal chemists and pharmacologists owing to their diverse arrays of chemical structures and biological activities, and a series of 1,3-oxazole derivatives has been developed into therapeutic agents (e.g., almoxatone, befloxatone, cabotegravir, delpazolid, fenpipalone, haloxazolam, inavolisib). A growing amount of evidence indicates that marine organisms are one of important sources of 1,3-oxazole-containing alkaloids. To improve our knowledge regarding these marine-derived substances, as many as 285 compounds are summarized in this review, which, for the first time, highlights their sources, structural features and biological properties, as well as their biosynthesis and chemical synthesis. Perspective for the future discovery of new 1,3-oxazole compounds from marine organisms is also provided.


Author(s):  
Nidia Cabral-Hipólito ◽  
Brenda Molina-Ramírez ◽  
María-de-la-Luz Sevilla-González ◽  
Rocío MezaVelázquez ◽  
Rubén García-Garza ◽  
...  

Background: The COVID-19 pandemic had infected more than 3.5M people around the world and more than 250K people died in 187 countries by May 2020. The causal agent of this disease is a coronavirus whose onset of symptoms to death range from 6 to 41 days with a median of 14 days. This period is dependent on several factors such as the presence of comorbidities, age and the efficiency of the innate or adaptive immune responses. The effectors mechanisms of both types of immune responses depend on the pathogen involved. In the case of a viral infection, the innate immune response may approach the harmful virus through pattern recognition receptors inducing an antiviral state. On the other hand, the adaptive immune response activates antibody production to neutralize or eliminate the virus. Phenolics are plant secondary metabolites with many biological activities for plants and humans against infection. Chemical modification of proteins may enhance their biological properties; thus, a protein of medical interest, for instance, a viral protein can be used as scaffold to build a biopharmaceutical conjugated or complexated with phenolics exhibiting structural complexity or biological activities to achieve effective phenolic-protein-based therapeutics like vaccine adjuvant complexes, immunogen conjugates, and antiviral conjugates. Conclusion: Pharmaceutical biotechnology applies the principles of biotechnology to develop biopharmaceuticals for protein-based therapeutics; such as adjuvants, recombinant proteins, monoclonal antibodies, and antivirals. As neither a vaccine nor a treatment for COVID-19 is currently available, this manuscript focuses on insights from pharmaceutical biotechnology into phenolic biopharmaceuticals against COVID-19.


2019 ◽  
Vol 14 (5) ◽  
pp. 1934578X1984581 ◽  
Author(s):  
Berhanu M Abegaz ◽  
Henok H Kinfe

This review documents all the new homoisoflavonoids (HIFs) that have been reported since 2007, whose total number has grown from 159 in 2007 to 295 at the present time. This review contains their structures, biological sources, plant parts they are obtained from, and, if reported, their optical rotations and melting points. The same classification is followed as an earlier review to ease reference to both reviews. This review takes note of the recent revision of plant families that were known to contain HIFs that have now been merged into one big family, Asparagaceae. Homoisoflavonoids also occur in Fabaceae and others. Two taxa, Ophiopogoan japonicus (Asparagaceae) and Caesalpinia sappan (Fabaceae), have been the source of many HIFs. These are briefly summarized. The biological properties of HIFs are also reviewed under the topics such as antioxidant, anti-inflammatory, antimicrobial, antidiabetic, and cytotoxic. The review also surveys the total synthesis of natural HIFs. All new compounds are classified and tabulated following the same style as the previous review. Dedicated to Professor Andrew Paul Krapcho on the occasion of his 87th Birthday.


2007 ◽  
Vol 2 (4) ◽  
pp. 1934578X0700200 ◽  
Author(s):  
Berhanu M. Abegaz ◽  
Joan Mutanyatta-Comar ◽  
Mathew Nindi

This review covers the phytochemical, biological properties, and synthesis of naturally occurring homoisoflavonoids. Homoisoflavonoids are a very important class of secondary metabolites whose numbers have grown from 20 in 1981 to 157 at the present time. They are found to occur in seven plant families. For the purpose of this review they are classified into five groups: 3-benzylchroman-4-ones, 3-benzylflavans, Δ3,9 and Δ2,3 3-benzylchroman-4-ones, benzocyclobutenes (scillascillins) and rearranged homoisoflavonoids (brazilin and related compounds). Biosynthetically, the 3-benzylchroman-4-ones and the 3-hydroxy-derivatives have been shown to arise from a chalcone precursor (sappanchalcone) and there is strong evidence that this isolable intermediate can be converted into the diverse structures such as the benzocyclobutenes (scillascillins) and the rearranged, brazilin-type compounds. Homoisoflavonoids possess a wide range of biological activities, including, antimicrobial, antimutagenic, anti-inflammatory, antidiabetic, etc, properties. The review also surveys the chemical synthesis of natural homoisoflavonoids. Analytical methods for the determination of these important metabolites are also reviewed. The last section is devoted to a brief review of the diagnostic NMR spectroscopic features of homoisoflavonoids. A comprehensive Table has also been compiled listing all known metabolites, their sources, melting points and optical rotation values (where available) and references.


2020 ◽  
Vol 18 ◽  
Author(s):  
Kourosh Cheraghipour ◽  
Hossein Mahmoudvand ◽  
Pegah Shakib ◽  
Ali Sheikhian ◽  
Vahid Malekara ◽  
...  

Background and Purpose: Curcuma longa is one of the most important medicinal plants used in traditional medicine. Its main compound, curcumin, has been widely reported for its biological properties. Materials and Methods: In this review article, its antifungal properties with a focus on the different strains of Aspergillus are discussed. The study data were obtained from various databases, including Scopus, PubMed, Web of Science, Embase and Google Scholar, which were published by December 2019. The main criterion for entering data into the survey data was access to the English abstract at the search stage. The keywords used in the search included C. longa, curcumin, antifungal effect and Aspergillus. Of the 2,500 studies in the initial search, only 15 were qualified for study inclusion, which 9 of them (60%) had performed on the effect of curcumin against Aspergillus spp. The other 6 studies (40%) had focused on the antifungal effect of C. longa. Moreover, 9 studies (60%) were performed in vitro, 4 studies (27%) in vivo and 2 studies (13%) both in vivo and in vitro. Results: Studies have shown that C. longa has a significant effect on the development of the majority of microorganisms. Its predominant metabolite, curcumin, plays a major role in C. longa's biological activities. Conclusion: Due to increased drug resistance, particularly antifungal, curcumin and its derivatives may be an appropriate option for the treatment of aspergillosis infections.


2019 ◽  
Author(s):  
Chem Int

A series of heterocyclic compounds incorporating pyridazine moiety were for diverse biological activities. Pyridazines and pyridazinones derivatives showed wide spectrum of biological activities such as vasodialator, cardiotonic, anticonvulsant, antihypertensive, antimicrobial, anti-inflammatory, analgesic, anti-feedant, herbicidal, and various other biological, agrochemical and industrial chemical activities. The results illustrated that the synthesized pyridazine/pyridazine compounds have diverse and significant biological activities. Mechanistic insights into the biological properties of pyridazinone derivatives and various synthetic techniques used for their synthesis are also described.


2019 ◽  
Vol 20 (4) ◽  
pp. 285-292 ◽  
Author(s):  
Abdullah M. Alnuqaydan ◽  
Bilal Rah

Background:Tamarix Articulata (T. articulata), commonly known as Tamarisk or Athal in Arabic region, belongs to the Tamaricaece species. It is an important halophytic medicinal plant and a good source of polyphenolic phytochemical(s). In traditional medicines, T. articulata extract is commonly used, either singly or in combination with other plant extracts against different ailments since ancient times.Methods:Electronic database survey via Pubmed, Google Scholar, Researchgate, Scopus and Science Direct were used to review the scientific inputs until October 2018, by searching appropriate keywords. Literature related to pharmacological activities of T. articulata, Tamarix species, phytochemical analysis of T. articulata, biological activities of T. articulata extracts. All of these terms were used to search the scientific literature associated with T. articulata; the dosage of extract, route of administration, extract type, and in-vitro and in-vivo model.Results:Numerous reports revealed that T. articulata contains a wide spectrum of phytochemical(s), which enables it to have a wide window of biological properties. Owing to the presence of high content of phytochemical compounds like polyphenolics and flavonoids, T. articulata is a potential source of antioxidant, anti-inflammatory and antiproliferative properties. In view of these pharmacological properties, T. articulata could be a potential drug candidate to treat various clinical conditions including cancer in the near future.Conclusion:In this review, the spectrum of phytochemical(s) has been summarized for their pharmacological properties and the mechanisms of action, and the possible potential therapeutic applications of this plant against various diseases discussed.


2019 ◽  
Vol 19 (17) ◽  
pp. 1392-1406
Author(s):  
Suvarna G. Kini ◽  
Ekta Rathi ◽  
Avinash Kumar ◽  
Varadaraj Bhat

Diphenyl ethers (DPE) and its analogs have exhibited excellent potential for therapeutic and industrial applications. Since the 19th century, intensive research is perpetuating on the synthetic routes and biological properties of DPEs. Few well-known DPEs are Nimesulide, Fenclofenac, Triclosan, Sorafenib, MK-4965, and MK-1439 which have shown the potential of this moiety as a lead scaffold for different pharmacological properties. In this review, we recapitulate the diverse synthetic route of DPE moiety inclusive of merits and demerits over the classical synthetic route and how this moiety sparked an interest in researchers to discern the SAR (Structure Activity Relationship) for the development of diversified biological properties of DPEs such as antimicrobial, antifungal, antiinflammatory & antiviral activities.


2020 ◽  
Vol 20 (12) ◽  
pp. 1093-1104 ◽  
Author(s):  
Muhammad Shoaib Ali Gill ◽  
Hammad Saleem ◽  
Nafees Ahemad

Natural Products (NP), specifically from medicinal plants or herbs, have been extensively utilized to analyze the fundamental mechanisms of ultimate natural sciences as well as therapeutics. Isolation of secondary metabolites from these sources and their respective biological properties, along with their lower toxicities and cost-effectiveness, make them a significant research focus for drug discovery. In recent times, there has been a considerable focus on isolating new chemical entities from natural flora to meet the immense demand for kinase modulators, and also to overcome major unmet medical challenges in relation to signal transduction pathways. The signal transduction systems are amongst the foremost pathways involved in the maintenance of life and protein kinases play an imperative part in these signaling pathways. It is important to find a kinase inhibitor, as it can be used not only to study cell biology but can also be used as a drug candidate for cancer and metabolic disorders. A number of plant extracts and their isolated secondary metabolites such as flavonoids, phenolics, terpenoids, and alkaloids have exhibited activities against various kinases. In the current review, we have presented a brief overview of some important classes of plant secondary metabolites as kinase modulators. Moreover, a number of phytocompounds with kinase inhibition potential, isolated from different plant species, are also discussed.


Sign in / Sign up

Export Citation Format

Share Document