scholarly journals Semisynthesis and Inhibitory Effects of Solidagenone Derivatives on TLR-Mediated Inflammatory Responses

Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3197 ◽  
Author(s):  
Irene Cuadrado ◽  
Ángel Amesty ◽  
Juan Cedrón ◽  
Juan Oberti ◽  
Ana Estévez-Braun ◽  
...  

A series of nine derivatives (2–10) were prepared from the diterpene solidagenone (1) and their structures were elucidated by means of spectroscopic studies. Their ability to inhibit inflammatory responses elicited in peritoneal macrophages by TLR ligands was investigated. Compounds 5 and 6 showed significant anti-inflammatory effects, as they inhibited the protein expression of nitric oxide synthase (NOS-2), cyclooxygenase-2 (COX-2), and cytokine production (TNF-α, IL-6, and IL-12) induced by the ligand of TLR4, lipopolysaccharide (LPS), acting at the transcriptional level. Some structure–activity relationships were outlined. Compound 5 was selected as a representative compound and molecular mechanisms involved in its biological activity were investigated. Inhibition of NF-κB and p38 signaling seems to be involved in the mechanism of action of compound 5. In addition, this compound also inhibited inflammatory responses mediated by ligands of TLR2 and TLR3 receptors. To rationalize the obtained results, molecular docking and molecular dynamic studies were carried out on TLR4. All these data indicate that solidagenone derivative 5 might be used for the design of new anti-inflammatory agents.

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Deok Jeong ◽  
Jaehwi Lee ◽  
Young-Su Yi ◽  
Yanyan Yang ◽  
Kyoung Won Kim ◽  
...  

Electrical stimulation with a weak current has been demonstrated to modulate various cellular and physiological responses, including the differentiation of mesenchymal stem cells and acute or chronic physical pain. Thus, a variety of investigations regarding the physiological role of nano- or microlevel currents at the cellular level are actively proceeding in the field of alternative medicine. In this study, we focused on the anti-inflammatory activity of aluminum-copper patches (ACPs) under macrophage-mediated inflammatory conditions. ACPs generated nanolevel currents ranging from 30 to 55 nA in solution conditions. Interestingly, the nanocurrent-generating aluminum-copper patches (NGACPs) were able to suppress both lipopolysaccharide-(LPS-) and pam3CSK-induced inflammatory responses such as NO and PGE2production in both RAW264.7 cells and peritoneal macrophages at the transcriptional level. Through immunoblotting and immunoprecipitation analyses, we found that p38/AP-1 could be the major inhibitory pathway in the NGACP-mediated anti-inflammatory response. Indeed, inhibition of p38 by SB203580 showed similar inhibitory activity of the production of TNF-αand PGE2and the expression of TNF-αand COX-2 mRNA. These results suggest that ACP-induced nanocurrents alter signal transduction pathways that are involved in the inflammatory response and could therefore be utilized in the treatment of various inflammatory diseases such as arthritis and colitis.


2014 ◽  
Vol 9 (11) ◽  
pp. 1934578X1400901
Author(s):  
Wei Chen ◽  
Ying-Ying Zhang ◽  
Zhuo Wang ◽  
Xiao-Hua Luo ◽  
Wan-Chun Sun ◽  
...  

Two new (3, 4) and two known phenolic derivatives (1, 2) were isolated from Radix Astragali. The structures of 1–4 were elucidated by extensive spectroscopic analysis. The anti-inflammatory activities of the isolated compounds were evaluated in LPS-induced mouse peritoneal macrophages. All four compounds exhibited potent inhibitory effects on TNF-α production and TNF-α, COX-2, IL-1β, IL-6 and iNOS mRNA expression at 50 μM.


Foods ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 582 ◽  
Author(s):  
Yuan ◽  
Zhang ◽  
Shen ◽  
Jia ◽  
Xie

Phytosterols, found in many commonly consumed foods, exhibit a broad range of physiological activities including anti-inflammatory effects. In this study, the anti-inflammatory effects of ergosterol, β-sitosterol, stigmasterol, campesterol, and ergosterol acetate were investigated in lipopolysaccharide (LPS)-induced RAW264.7 macrophages. Results showed that all phytosterol compounds alleviated the inflammatory reaction in LPS-induced macrophage models; cell phagocytosis, nitric oxide (NO) production, release of tumor necrosis factor-α (TNF-α), and expression and activity of pro-inflammatory mediator cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and phosphorylated extracellular signal-regulated protein kinase (p-ERK) were all inhibited. The anti-inflammatory activity of β-sitosterol was higher than stigmasterol and campesterol, which suggests that phytosterols without a double bond on C-22 and with ethyl on C-24 were more effective. However, inconsistent results were observed upon comparison of ergosterol and ergosterol acetate (hydroxy or ester group on C-3), which suggest that additional research is still needed to ascertain the contribution of structure to their anti-inflammatory effects.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
E. Sánchez-Miranda ◽  
J. Lemus-Bautista ◽  
S. Pérez ◽  
J. Pérez-Ramos

Kramecyne is a new peroxide, it was isolated fromKrameria cytisoides, methanol extract, and this plant was mostly found in North and South America. This compound showed potent anti-inflammatory activity; however, the mechanisms by which this compound exerts its anti-inflammatory effect are not well understood. In this study, we examined the effects of kramecyne on inflammatory responses in mouse lipopolysaccharide- (LPS-) induced peritoneal macrophages. Our findings indicate that kramecyne inhibits LPS-induced production of tumor necrosis factor (TNF-α) and interleukin- (IL-) 6. During the inflammatory process, levels of cyclooxygenase- (COX-) 2, nitric oxide synthase (iNOS), and nitric oxide (NO) increased in mouse peritoneal macrophages; however, kramecyne suppressed them significantly. These results provide novel insights into the anti-inflammatory actions and support its potential use in the treatment of inflammatory diseases.


2008 ◽  
Vol 36 (06) ◽  
pp. 1145-1158 ◽  
Author(s):  
Su-Jin Kim ◽  
Jung-Sun Kim ◽  
In-Young Choi ◽  
Dong-Hyun Kim ◽  
Min-Cheol Kim ◽  
...  

Schizonepeta tenuifolia (ST) is a well-known herb to treat the cold and its associated headache. However, the anti-inflammatory mechanism of ST in mouse peritoneal macrophages is not clear. In this study, we demonstrated that ST inhibited lipopolysaccaride (LPS)-induced tumor necrosis factor (TNF)-α and interleukin (IL)-6 production. The maximal inhibition rate of TNF-α and IL-6 production by ST (2 mg/ml) was 48.01 ± 2.8% and 56.45 ± 2.8%, respectively. During the inflammatory process, cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) were increased in mouse peritoneal macrophages. However, treated with ST decreased the protein level of COX-2 and iNOS, as well as the production of PGE2and NO in LPS-stimulated mouse peritoneal macrophages. In addition, ST inhibited the phosphorylation of MAPK. Taken together, the results of this study suggest an important molecular mechanism by which ST reduces inflammation, which may explain its beneficial effect in the regulation of inflammatory reactions.


Author(s):  
Jérôme Hadjadj ◽  
Nader Yatim ◽  
Laura Barnabei ◽  
Aurélien Corneau ◽  
Jeremy Boussier ◽  
...  

AbstractBackgroundCoronavirus disease 2019 (Covid-19) is a major global threat that has already caused more than 100,000 deaths worldwide. It is characterized by distinct patterns of disease progression implying a diverse host immune response. However, the immunological features and molecular mechanisms involved in Covid-19 severity remain so far poorly known.MethodsWe performed an integrated immune analysis that included in-depth phenotypical profiling of immune cells, whole-blood transcriptomic and cytokine quantification on a cohort of fifty Covid19 patients with a spectrum of disease severity. All patient were tested 8 to 12 days following first symptoms and in absence of anti-inflammatory therapy.ResultsA unique phenotype in severe and critically ill patients was identified. It consists in a profoundly impaired interferon (IFN) type I response characterized by a low interferon production and activity, with consequent downregulation of interferon-stimulated genes. This was associated with a persistent blood virus load and an exacerbated inflammatory response that was partially driven by the transcriptional factor NFĸB. It was also characterized by increased tumor necrosis factor (TNF)-α and interleukin (IL)-6 production and signaling as well as increased innate immune chemokines.ConclusionWe propose that type-I IFN deficiency in the blood is a hallmark of severe Covid-19 and could identify and define a high-risk population. Our study provides a rationale for testing IFN administration combined with adapted anti-inflammatory therapy targeting IL-6 or TNF-α in most severe patients. These data also raise concern for utilization of drugs that interfere with the IFN pathway.


2013 ◽  
Vol 2013 ◽  
pp. 1-16 ◽  
Author(s):  
Ting Shen ◽  
Woo Seok Yang ◽  
Young-Su Yi ◽  
Gi-Ho Sung ◽  
Man Hee Rhee ◽  
...  

Andrographolide (AG) is an abundant component of plants of the genusAndrographisand has a number of beneficial properties including neuroprotective, anticancer, anti-inflammatory, and antidiabetic effects. Despite numerous pharmacological studies, the precise mechanism of AG is still ambiguous. Thus, in the present study, we investigated the molecular mechanisms of AG and its target proteins as they pertain to anti-inflammatory responses. AG suppressed the production of nitric oxide (NO) and prostaglandin E2(PGE2), as well as the mRNA abundance of inducible NO synthase (iNOS), tumor necrosis factor-alpha (TNF-α), cyclooxygenase (COX)-2, and interferon-beta (IFN-β) in a dose-dependent manner in both lipopolysaccharide- (LPS-) activated RAW264.7 cells and peritoneal macrophages. AG also substantially ameliorated the symptoms of LPS-induced hepatitis and EtOH/HCl-induced gastritis in mice. Based on the results of luciferase reporter gene assays, kinase assays, and measurement of nuclear levels of transcription factors, the anti-inflammatory effects of AG were found to be clearly mediated by inhibition of both (1) extracellular signal-regulated kinase (ERK)/activator protein (AP)-1 and (2) IκB kinaseε(IKKε)/interferon regulatory factor (IRF)-3 pathways. In conclusion, we detected a novel molecular signaling pathway by which AG can suppress inflammatory responses. Thus, AG is a promising anti-inflammatory drug with two pharmacological targets.


2014 ◽  
Vol 42 (04) ◽  
pp. 869-889 ◽  
Author(s):  
Shing-Hwa Liu ◽  
Tien-Hui Lu ◽  
Chin-Chuan Su ◽  
Ing-Shiow Lay ◽  
Hui-Yi Lin ◽  
...  

Inflammation is a serious health issue worldwide that induces many diseases, such as inflammatory bowel disease (IBD), sepsis, acute pancreatitis and lung injury. Thus, there is a great deal of interest in new methods of limiting inflammation. In this study, we investigated the leaves of Nelumbo nucifera Gaertn, an aquatic perennial plant cultivated in eastern Asia and India, in anti-inflammatory pharmacological effects in the murine macrophage cell line RAW264.7. Results showed that lipopolysaccharide (LPS) increased the protein expression of inducible nitric oxide synthase (iNOS) and COX-2, as well as the mRNA expression and level of IL-6 and TNF-α, while NNE significantly reduced these effects of LPS. LPS also induced phospho-JNK protein expression. The JNK-specific inhibitor SP600125 decreased the proteins expression of phospho-JNK, iNOS, COX-2, and the mRNAs expression and levels of IL-6 and TNF-α. Further, NNE reduced the protein expression of phospho-JNK. LPS was also found to promote the translocation of NF-κB from the cytosol to the nucleus and to decrease the expression of cytosolic IκB. NNE and SP600125 treatment recovered the LPS-induced expression of NF-κB and IκB. While phospho-ERK and phospho-p38 induced by LPS, could not be reversed by NNE. To further investigate the major components of NNE in anti-inflammatory effects, we determined the quercetin and catechin in inflammatory signals. Results showed that quercetin and catechin significantly decreased the proteins expression of iNOS, COX-2 and phospho-JNK. Besides, the mRNAs and levels of IL-6 and TNF-α also decreased by quercetin and catechin treatment in LPS-induced RAW264.7 cells. These results showed that NNE and its major components quercetin and catechin exhibit anti-inflammatory activities by inhibiting the JNK- and NF-κB-regulated pathways and could therefore be an useful anti-inflammatory agent.


Molecules ◽  
2019 ◽  
Vol 24 (20) ◽  
pp. 3731 ◽  
Author(s):  
Shaoxia Ye ◽  
Qiyao Zheng ◽  
Yang Zhou ◽  
Bai Bai ◽  
Depo Yang ◽  
...  

The lindenane-type sesquiterpenoid chlojaponilactone B (1), isolated from Chloranthus japonicus, has been reported to possess anti-inflammatory properties. The present study aimed to further explore the molecular mechanisms underlying the anti-inflammatory activity of 1. RNA-seq analyses revealed the significant changes in the expression levels of genes related to multiple inflammatory pathways upon treatment of lipopolysaccharide (LPS)-induced RAW 264.7 murine macrophages with 1. Real time PCR (RT-PCR) and Western blotting were used to confirm the modulations in the expression of essential molecules related to inflammatory responses. Compound 1 inhibited toll like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88) activation upon LPS stimulation, influencing the expression of NF-κB and pro-inflammatory mediators. Molecular docking studies showed that 1 bound to TLR4 in a manner similar to that of TAK-242, a TLR4 inhibitor. Moreover, our results showed that 1 suppressed inflammatory responses by inhibiting TLR4 and subsequently decreasing reactive oxygen species (ROS) generation, downregulating the NF-κB, thus reducing the expression of the pro-inflammatory cytokines iNOS, NO, COX-2, IL-6 and TNF-α; these effects were similar to those of TAK-242. We proposed that 1 should be considered as a potential anti-inflammatory compound in future research.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Takuhiro Uto ◽  
De-Xing Hou ◽  
Osamu Morinaga ◽  
Yukihiro Shoyama

6-(Methylsulfinyl)hexyl isothiocyanate (6-MSITC) is a major bioactive compound in wasabi (Wasabia japonica), which is a typical Japanese pungent spice. Recently,in vivoandin vitrostudies demonstrated that 6-MSITC has several biological properties, including anti-inflammatory, antimicrobial, antiplatelet, and anticancer effects. We previously reported that 6-MSITC strongly suppresses cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and cytokines, which are important factors that mediate inflammatory processes. Moreover, molecular analysis demonstrated that 6-MSITC blocks the expressions of these factors by suppressing multiple signal transduction pathways to attenuate the activation of transcriptional factors. Structure-activity relationships of 6-MSITC and its analogues containing an isothiocyanate group revealed that methylsulfinyl group and the length of alkyl chain of 6-MSITC might be related to high inhibitory potency. In this paper, we review the anti-inflammatory properties of 6-MSITC and discuss potential molecular mechanisms focusing on inflammatory responses by macrophages.


Sign in / Sign up

Export Citation Format

Share Document