scholarly journals Structures, Activities and Drug-Likeness of Anti-Infective Xanthone Derivatives Isolated from the Marine Environment: A Review

Molecules ◽  
2019 ◽  
Vol 24 (2) ◽  
pp. 243 ◽  
Author(s):  
Daniela R. P. Loureiro ◽  
José X. Soares ◽  
Joana C. Costa ◽  
Álvaro F. Magalhães ◽  
Carlos M. G. Azevedo ◽  
...  

Marine organisms represent almost half of total biodiversity and are a very important source of new bioactive substances. Within the varied biological activities found in marine products, their antimicrobial activity is one of the most relevant. Infectious diseases are responsible for high levels of morbidity and mortality and many antimicrobials lose their effectiveness with time due to the development of resistance. These facts justify the high importance of finding new, effective and safe anti-infective agents. Among the variety of biological activities of marine xanthone derivatives, one that must be highlighted is their anti-infective properties. In this work, a literature review of marine xanthones with anti-infective activity, namely antibacterial, antifungal, antiparasitic and antiviral, is presented. Their structures, biological activity, sources and the methods used for bioactivity evaluation are described. The xanthone derivatives are grouped in three sets: xanthones, hydroxanthones and glycosylated derivatives. Moreover, molecular descriptors, biophysico-chemical properties, and pharmacokinetic parameters were calculated, and the chemical space occupied by marine xanthone derivatives is recognized. The chemical space was compared with marketed drugs and framed accordingly to the drug-likeness concept in order to profile the pharmacokinetic of anti-infective marine xanthone derivatives.

Marine Drugs ◽  
2022 ◽  
Vol 20 (1) ◽  
pp. 58
Author(s):  
José X. Soares ◽  
Daniela R. P. Loureiro ◽  
Ana Laura Dias ◽  
Salete Reis ◽  
Madalena M. M. Pinto ◽  
...  

The marine environment is an important source of specialized metabolites with valuable biological activities. Xanthones are a relevant chemical class of specialized metabolites found in this environment due to their structural variety and their biological activities. In this work, a comprehensive literature review of marine xanthones reported up to now was performed. A large number of bioactive xanthone derivatives (169) were identified, and their structures, biological activities, and natural sources were described. To characterize the chemical space occupied by marine-derived xanthones, molecular descriptors were calculated. For the analysis of the molecular descriptors, the xanthone derivatives were grouped into five structural categories (simple, prenylated, O-heterocyclic, complex, and hydroxanthones) and six biological activities (antitumor, antibacterial, antidiabetic, antifungal, antiviral, and miscellaneous). Moreover, the natural product-likeness and the drug-likeness of marine xanthones were also assessed. Marine xanthone derivatives are rewarding bioactive compounds and constitute a promising starting point for the design of other novel bioactive molecules.


Author(s):  
Viviana Consonni ◽  
Roberto Todeschini

Quantitative Structure-Activity Relationships (QSARs) are models relating variation of molecule properties, such as biological activities, to variation of some structural features of chemical compounds. Three main topics take part of the QSAR/QSPR approach to the scientific research: the representation of molecular structure, the definition of molecular descriptors and the chemoinformatics tools. Molecular descriptors are numerical indices encoding some information related to the molecular structure. They can be both experimental physico-chemical properties of molecules and theoretical indices calculated by mathematical formulas or computational algorithms. In the last few decades, much interest has been addressed to studying how to encompass and convert the information encoded in the molecular structure into one or more numbers used to establish quantitative relationships between structures and properties, biological activities or other experimental properties. Autocorrelation descriptors are a class of molecular descriptors based on the statistical concept of spatial autocorrelation applied to the molecular structure. The objective of this chapter is to investigate the chemical information encompassed by autocorrelation descriptors and elucidate their role in QSAR and drug design. After a short introduction to molecular descriptors from a historical point of view, the chapter will focus on reviewing the different types of autocorrelation descriptors proposed in the literature so far. Then, some methodological topics related to multivariate data analysis will be overviewed paying particular attention to analysis of similarity/diversity of chemical spaces and feature selection for multiple linear regressions. The last part of the chapter will deal with application of autocorrelation descriptors to study similarity relationships of a set of flavonoids and establish QSARs for predicting affinity constants, Ki, to the GABAA benzodiazepine receptor site, BzR.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1515
Author(s):  
Izudin Redžepović ◽  
Slavko Radenković ◽  
Boris Furtula

The eigenvalues of the characteristic polynomial of a graph are sensitive to its symmetry-related characteristics. Within this study, we have examined three eigenvalue–based molecular descriptors. These topological molecular descriptors, among others, are gathering information on the symmetry of a molecular graph. Furthermore, they are being ordinarily employed for predicting physico–chemical properties and/or biological activities of molecules. It has been shown that these indices describe well molecular features that are depending on fine structural details. Therefore, revealing the impact of structural details on the values of the eigenvalue–based topological indices should give a hunch how physico–chemical properties depend on them as well. Here, an effect of a ring in a molecule on the values of the graph energy, Estrada index and the resolvent energy of a graph is examined.


Marine Drugs ◽  
2021 ◽  
Vol 19 (5) ◽  
pp. 241
Author(s):  
Shaden A. M. Khalifa ◽  
Eslam S. Shedid ◽  
Essa M. Saied ◽  
Amir Reza Jassbi ◽  
Fatemeh H. Jamebozorgi ◽  
...  

Cyanobacteria are photosynthetic prokaryotic organisms which represent a significant source of novel, bioactive, secondary metabolites, and they are also considered an abundant source of bioactive compounds/drugs, such as dolastatin, cryptophycin 1, curacin toyocamycin, phytoalexin, cyanovirin-N and phycocyanin. Some of these compounds have displayed promising results in successful Phase I, II, III and IV clinical trials. Additionally, the cyanobacterial compounds applied to medical research have demonstrated an exciting future with great potential to be developed into new medicines. Most of these compounds have exhibited strong pharmacological activities, including neurotoxicity, cytotoxicity and antiviral activity against HCMV, HSV-1, HHV-6 and HIV-1, so these metabolites could be promising candidates for COVID-19 treatment. Therefore, the effective large-scale production of natural marine products through synthesis is important for resolving the existing issues associated with chemical isolation, including small yields, and may be necessary to better investigate their biological activities. Herein, we highlight the total synthesized and stereochemical determinations of the cyanobacterial bioactive compounds. Furthermore, this review primarily focuses on the biotechnological applications of cyanobacteria, including applications as cosmetics, food supplements, and the nanobiotechnological applications of cyanobacterial bioactive compounds in potential medicinal applications for various human diseases are discussed.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 883
Author(s):  
Mebeaselassie Andargie ◽  
Maria Vinas ◽  
Anna Rathgeb ◽  
Evelyn Möller ◽  
Petr Karlovsky

Major lignans of sesame sesamin and sesamolin are benzodioxol--substituted furofurans. Sesamol, sesaminol, its epimers, and episesamin are transformation products found in processed products. Synthetic routes to all lignans are known but only sesamol is synthesized industrially. Biosynthesis of furofuran lignans begins with the dimerization of coniferyl alcohol, followed by the formation of dioxoles, oxidation, and glycosylation. Most genes of the lignan pathway in sesame have been identified but the inheritance of lignan content is poorly understood. Health-promoting properties make lignans attractive components of functional food. Lignans enhance the efficiency of insecticides and possess antifeedant activity, but their biological function in plants remains hypothetical. In this work, extensive literature including historical texts is reviewed, controversial issues are critically examined, and errors perpetuated in literature are corrected. The following aspects are covered: chemical properties and transformations of lignans; analysis, purification, and total synthesis; occurrence in Seseamum indicum and related plants; biosynthesis and genetics; biological activities; health-promoting properties; and biological functions. Finally, the improvement of lignan content in sesame seeds by breeding and biotechnology and the potential of hairy roots for manufacturing lignans in vitro are outlined.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 844 ◽  
Author(s):  
Andrea Rónavári ◽  
Nóra Igaz ◽  
Dóra I. Adamecz ◽  
Bettina Szerencsés ◽  
Csaba Molnar ◽  
...  

The nanomaterial industry generates gigantic quantities of metal-based nanomaterials for various technological and biomedical applications; however, concomitantly, it places a massive burden on the environment by utilizing toxic chemicals for the production process and leaving hazardous waste materials behind. Moreover, the employed, often unpleasant chemicals can affect the biocompatibility of the generated particles and severely restrict their application possibilities. On these grounds, green synthetic approaches have emerged, offering eco-friendly, sustainable, nature-derived alternative production methods, thus attenuating the ecological footprint of the nanomaterial industry. In the last decade, a plethora of biological materials has been tested to probe their suitability for nanomaterial synthesis. Although most of these approaches were successful, a large body of evidence indicates that the green material or entity used for the production would substantially define the physical and chemical properties and as a consequence, the biological activities of the obtained nanomaterials. The present review provides a comprehensive collection of the most recent green methodologies, surveys the major nanoparticle characterization techniques and screens the effects triggered by the obtained nanomaterials in various living systems to give an impression on the biomedical potential of green synthesized silver and gold nanoparticles.


2017 ◽  
Vol 17 (2) ◽  
pp. 200-209 ◽  
Author(s):  
Thomson Patrick Joseph ◽  
Warren Chanda ◽  
Arshad Ahmed Padhiar ◽  
Samana Batool ◽  
Shao LiQun ◽  
...  

Cancer is the leading cause of morbidity and mortality around the globe. For certain types of cancer, chemotherapy drugs have been extensively used for treatment. However, severe side effects and the development of resistance are the drawbacks of these agents. Therefore, development of new agents with no or minimal side effects is of utmost importance. In this regard, natural compounds are well recognized as drugs in several human ailments, including cancer. One class of fungi, “mushrooms,” contains numerous compounds that exhibit interesting biological activities, including antitumor activity. Many researchers, including our own group, are focusing on the anticancer potential of different mushrooms and the underlying molecular mechanism behind their action. The aim of this review is to discuss PI3K/AKT, Wnt-CTNNB1, and NF-κB signaling pathways, the occurrence of genetic alterations in them, the association of these aberrations with different human cancers and how different nodes of these pathways are targeted by various substances of mushroom origin. We have given evidence to propose the therapeutic attributes and possible mode of molecular actions of various mushroom-originated compounds. However, anticancer effects were typically demonstrated in in vitro and in vivo models and very limited number of studies have been conducted in the human population. It is our belief that this review will help the research community in designing concrete preclinical and clinical studies to test the anticancer potential of mushroom-originated compounds on different cancers harboring particular genetic alteration(s).


2012 ◽  
Vol 8 (8) ◽  
pp. 3014-3026 ◽  
Author(s):  
Cuifeng Wang ◽  
Xin Luo ◽  
Yuefang Zhao ◽  
Lina Han ◽  
Xin Zeng ◽  
...  

2021 ◽  
Vol 17 ◽  
Author(s):  
Em Canh Pham ◽  
Tuyen Ngoc Truong ◽  
Nguyen Hanh Dong ◽  
Duy Duc Vo ◽  
Tuoi Thi Hong Do

Background: Many compounds containing a five-membered heterocyclic ring display exceptional chemical properties and versatile biological activities. Objective: The objective of the present study was the desire to prepare the 5-substituted 2-amino-1,3,4-oxadiazole and 2-amino-1,3,4-thiadiazole derivatives and evaluate their potential anticancer, antibacterial and antifungal activities. Methods: Twenty-seven derivatives were synthesized by iodine-mediated cyclization of semicarbazones or thiosemicarbazones obtained from condensation of semicarbazide or thiosemicarbazide and aldehydes. The structures were confirmed by 1H-NMR, 13C-NMR and MS spectra. The antibacterial and antifungal activities were evaluated by diffusion method and the anticancer activities were evaluated by MTT assay. Results: Twenty-seven derivatives have been synthesized in moderate to good yields. A number of derivatives exhibited potential antibacterial, antifungal and anticancer activities. Conclusion: Compounds (1b, 1e and 1g) showed antibacterial activity against Streptococcus faecalis, MSSA and MRSA with MIC ranging between 4 to 64 µg/mL. Compound (2g) showed antifungal activity against Candida albicans (8 µg/mL) and Aspergillus niger (64 µg/mL). Compound (1o) exhibited high cytotoxic activity against HepG2 cell line (IC50 value 8.6 µM), which is comparable to the activity of paclitaxel, and is non-toxic on LLC-PK1 normal cell line. The structure activity relationship and molecular docking study of the synthesized compounds are also reported.


2021 ◽  
Vol 25 ◽  
Author(s):  
Pedro Alves Bezerra Morais ◽  
Carla Santana Francisco ◽  
Heberth de Paula ◽  
Rayssa Ribeiro ◽  
Mariana Alves Eloy ◽  
...  

: Historically, the medicinal chemistry is concerned with the approach of organic chemistry to new drug synthesis. Considering the fruitful collections of new molecular entities, the dedicated efforts for medicinal chemistry are rewarding. Planning and search of new and applicable pharmacologic therapies involve the altruistic nature of the scientists. Since the 19th century, notoriously the application of isolated and characterized plant-derived compounds in modern drug discovery and in various stages of clinical development highlight its viability and significance. Natural products influence a broad range of biological processes, covering transcription, translation, and post-translational modification and being effective modulators of almost all basic cellular processes. The research of new chemical entities through “click chemistry” continuously opens up a map for the remarkable exploration of chemical space in towards leading natural products optimization by structure-activity relationship. Finally, here in this review, we expect to gather a broad knowledge involving triazolic natural products derivatives, synthetic routes, structures, and their biological activities.


Sign in / Sign up

Export Citation Format

Share Document