scholarly journals New Caffeoylquinic Acid Derivatives and Flavanone Glycoside from the Flowers of Chrysanthemum morifolium and Their Bioactivities

Molecules ◽  
2019 ◽  
Vol 24 (5) ◽  
pp. 850 ◽  
Author(s):  
Peng-Fei Yang ◽  
Ya-Nan Yang ◽  
Chun-Yu He ◽  
Zhi-Fei Chen ◽  
Qi-Shan Yuan ◽  
...  

The Chrysanthemum morifolium flower is widely used in China and Japan as a food, beverage, and medicine for many diseases. In our work, two new caffeoylquinic acid derivatives (1, 2), a new flavanone glycoside (3), and six reported flavanones (4–9) were isolated and identified from the flowers of C. morifolium. The chemical structures of all isolates were elucidated by the analysis of comprehensive spectroscopic data as well as by comparison with previously reported data. The isolated constituents 1–8 were evaluated for their neuroprotective activity, and compounds 3 and 4 displayed neuroprotective effects against hydrogen peroxide-induced neurotoxicity in human neuroblastoma SH-SY5Y cells.

2017 ◽  
Vol 6 ◽  
Author(s):  
Manjeet Singh ◽  
Charles Ramassamy

AbstractCanine cognitive dysfunction (CCD) is an age-dependent neurodegenerative condition characterised by changes in decline in learning and memory patterns. The neurodegenerative features of CCD in ageing dogs and cats are similar to human ageing and Alzheimer's disease (AD). Discovering neuroprotective disease-modifying therapies against CCD and AD is a major challenge. Strong evidence supports the role of amyloid β peptide deposition and oxidative stress in the pathophysiology of CCD and AD. In both the human and canine brain, oxidative damage progressively increases with age. Dietary antioxidants from natural sources hold a great promise in halting the progression of CCD and AD.Withania somnifera(WS), an Ayurvedic tonic medicine, also known as ‘Indian ginseng’ orashwagandhahas a long history of use in memory-enhancing therapy but there is a dearth of studies on its neuroprotective effects. The objective of this study was to investigate whetherWSextract can protect against Aβ peptide- and acrolein-induced toxicity. We demonstrated that treatment withWSextract significantly protected the human neuroblastoma cell line SK-N-SH against Aβ peptide and acrolein in various cell survival assays. Furthermore, treatment withWSextract significantly reduced the generation of reactive oxygen species in SK-N-SH cells. Finally, our results showed thatWSextract is also a potent inhibitor of acetylcholinesterase activity. Thus, our initial findings indicate thatWSextract may act as an antioxidant and cholinergic modulator and may have beneficial effects in CCD and AD therapy.


Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3724
Author(s):  
Zeinab Abdulwanis Mohamed ◽  
Enas Mohamed Eliaser ◽  
Mohammed Sani Jaafaru ◽  
Norshariza Nordin ◽  
Costas Ioannides ◽  
...  

Neurodegenerative diseases (NDDs) are chronic conditions that have drawn robust interest from the scientific community. Phytotherapeutic agents are becoming an important source of chemicals for the treatment and management of NDDs. Various secondary metabolites have been isolated from Melicope lunu-ankenda plant leaves, including phenolic acid derivatives. However, their neuroprotective activity remains unclear. Thus, the aim of this study is to elucidate the in vitro neuroprotective activity of 7-geranyloxycinnamic acid isolated from Melicope lunu-ankenda leaves. The neuroprotective activity was evaluated in differentiated human neuroblastoma (SH-SY5Y) cells by monitoring cell viability using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Moreover, the potential to impair apoptosis in differentiated cells was investigated employing the Annexin V-FITC assay, acridine orange and propidium iodide (AO/PI) staining, and fluorescence microscopy. Morphological assessment and ultrastructural analysis were performed using scanning and transmission electron microscopy to evaluate the effect of 7-geranyloxycinnamic acid on surface morphology and internal features of the differentiated cells. Pre-treatment of neuronal cells with 7-geranyloxycinnamic acid significantly protected the differentiated SH-SY5Y cells against H2O2-induced apoptosis. Cytoskeleton and cytoplasmic inclusion were similarly protected by the 7-geranyloxycinnamic acid treatment. The present findings demonstrate the neuroprotective potential of 7-geranyloxycinnamic acid against H2O2-induced neurotoxicity in neuronal cells, which is an established hallmark of neuronal disorders.


Pharmacia ◽  
2021 ◽  
Vol 68 (3) ◽  
pp. 657-664
Author(s):  
Zlatina Kokanova-Nedialkova ◽  
Denitsa Aluani ◽  
Virginia Tzankova ◽  
Paraskev Nedialkov

A modified UHPLC-HRMS method for simultaneous quantification of eight flavonoids from the aerial parts of the wild spinach (Chenopodium bonus-henricus L.) was re-validated for specificity, the limit of detection and quantitation limit, linearity, accuracy, and precision. The glycosides of spinacetin (Chbhnf-04, Chbhnf-06, and Chbhnf-08) and patuletin (Chbhnf-01) were the predominant compounds. The total amount of assayed flavonoids from the aerial parts of a title plant was estimated to be 1.82% and 1.4% in two different populations from Vitosha Mountain (Bulgaria). The neuroprotective properties of compounds Chbhnf-02, Chbhnf-04, Chbhnf-06, Chbhnf-07, Chbhnf-08 were further assessed using a model of H2O2-induced oxidative stress on human neuroblastoma SH-SY5Y cells. All tested flavonoids demonstrated statistically significant neuroprotective activity close to that of silibinin. Patuletin (Chbhnf-07) and spinacetin (Chbhnf-08) triglycosides showed the most protective effects at the lowest concentration of 50 µM.


2020 ◽  
Vol 16 (3) ◽  
pp. 326-339 ◽  
Author(s):  
Javor Mitkov ◽  
Alexandra Kasabova-Angelova ◽  
Magdalena Kondeva-Burdina ◽  
Virginia Tzankova ◽  
Diana Tzankova ◽  
...  

Objective:The syntheses and biological activities of 8-thiosubstituted-1,3,7- trimethylxanthine derivatives bearing an aromatic hydrazide-hydrazone fragment in the side chain at C8 are described.Methods:The chemical structures of the synthesized compounds 6a-m were confirmed based on their MS, FTIR, 1H NMR and 13C NMR analyses.Results:The in vitro investigations of neuroprotective effects manifested on cellular (human neuroblastoma cell line SH-SY5Y) and sub-cellular (isolated rat brain synaptosomes) levels show that compounds 6g and 6i demonstrate statistically significant activity. The performed monoamine oxidase B (MAO-B) inhibition study in vitro show that compounds 6g and 6i possess a significant MAO-B inhibition activity close to L-deprenyl.Conclusion:These results suggest that such compounds may be utilized for the development of new candidate MAO-B inhibitors for the treatment of Parkinson’s disease.


2021 ◽  
Vol 14 (9) ◽  
pp. 911
Author(s):  
Hee-Ju Lee ◽  
Eun-Jin Park ◽  
Ba-Wool Lee ◽  
Hyo-Moon Cho ◽  
Thi-Linh-Giang Pham ◽  
...  

The accumulation of amyloid beta (Aβ) peptides is common in the brains of patients with Alzheimer’s disease, who are characterized by neurological cognitive impairment. In the search for materials with inhibitory activity against the accumulation of the Aβ peptide, seven undescribed flavanonol glycosides (1–7) and five known compounds (8–12) were isolated from stems of Myrsine seguinii by HPLC-qTOF MS/MS-based molecular networking. Interestingly, this plant has been used as a folk medicine for the treatment of various inflammatory conditions. The chemical structures of the isolated compounds (1–12) were elucidated based on spectroscopic data, including 1D and 2D nuclear magnetic resonance (NMR), high-resolution electrospray ionization mass spectrometry (HRESIMS) and electronic circular dichroism (ECD) data. Compounds 2, 6 and 7 showed neuroprotective activity against Aβ-induced cytotoxicity in Aβ42-transfected HT22 cells.


2018 ◽  
Vol 21 (8) ◽  
pp. 571-582 ◽  
Author(s):  
Juxiang Liu ◽  
Lianli Zhang ◽  
Dan Liu ◽  
Baocai Li ◽  
Mi Zhang

Aim & Objectives: Curcuminoids are characteristic constituents in Curcuma, displaying obviously neuroprotective activities against oxidative stress. As one of the Traditional Chinese Medicines from Curcuma, the radix of Curcuma aromatica is also rich in those chemicals, but its neuroprotective activity and mechanism remain unknown. The aim of the current study is to evaluate the neuroprotective effects of extracts from the radix of C. aromatica (ECAs) on H2O2-damaged PC12 cells. Material and Methods: The model of oxidative stress damage was established by treatment of 400 µM H2O2 on PC12 to induce cell damage. After the treatment of ECWs for 24 h, the cell viability, LDH, SOD, CAT and GSH were measured to evaluate the neuroprotection of ECAs on that model. The potential action mechanism was studied by measurement of level of ROS, cell apoptosis rate, mitochondrial membrane potential (MMP), morphologic change, the intracellular Ca2+ content (F340/F380) and the expressions of Bcl-2, Bax and Caspase-3. Additionally, the constituents from tested extracts were analyzed by HPLC-DAD-Q-TOF-MS method. Results: Compared with a positive control, Vitamin E, 10 µg/ml of 95% EtOH extract (HCECA) and 75% EtOH extract (MCECA) can markedly increase the rate of cell survival and enhance the antioxidant enzyme activities of SOD, CAT, increase the levels of GSH, decrease LDH release and the level of ROS, attenuate the intracellular Ca2+ overloading, reduce the cell apoptotic rate and stabilize MMP, down-regulate Bcl-2 expression, up-regulate Bax and caspase-3 expression, and improve the change of cell morphology. The chemical analysis showed that diarylheptanoids and sesquiterpenoids are the major chemicals in tested extracts and the former were richer in HCECA and MCECA than others. Conclusions: These findings indicated that the effects of HCECA and MCECA on inhibiting the cells damage induced by H2O2 in PC12 are better than other extracts from the radix of C. aromatica, and the active constituents with neuroprotective effects consisting in those two active extracts are diarylheptanoids.


Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 539
Author(s):  
Santa Cirmi ◽  
Alessandro Maugeri ◽  
Giovanni Enrico Lombardo ◽  
Caterina Russo ◽  
Laura Musumeci ◽  
...  

Parkinson’s disease (PD) is a degenerative disorder of the nervous system due to unceasing impairment of dopaminergic neurons situated in the substantia nigra. At present, anti-PD drugs acting on dopamine receptors are mainly symptomatic and have only very limited neuroprotective effects, whereas drugs slowing down neurodegeneration of dopaminergic neurons and deterioration of clinical symptoms are not yet available. Given that, the development of more valuable pharmacological strategies is highly demanded. Comprehensive research on innovative neuroprotective drugs has proven that anti-inflammatory and antioxidant molecules from food sources may prevent and/or counteract neurodegenerative diseases, such as PD. The present study was aimed at the evaluation the protective effect of mandarin juice extract (MJe) against 6-hydroxydopamine (6-OHDA)-induced SH-SY5Y human neuroblastoma cell death. Treatment of differentiated SH-SY5Y cells with 6-OHDA brought cell death, and specifically, apoptosis, which was significantly inhibited by the preincubation with MJe through caspase 3 blockage and the modulation of p53, Bax, and Bcl-2 genes. In addition, it showed antioxidant properties in abiotic models as well as in vitro, where it reduced both reactive oxygen and nitrogen species induced by 6-OHDA, along with restored mitochondrial membrane potential, and prevented the oxidative DNA damage evoked by 6-OHDA. Furthermore, MJe restored the impaired balance of SNCA, LRRK2, PINK1, parkin, and DJ-1 gene levels, PD-related factors, caused by 6-OHDA oxidative stress. Overall, these results indicate that MJe exerts neuroprotective effects against 6-OHDA-induced cell death in SH-SY5Y cells by mechanisms involving both the specific interaction with intracellular pathways and its antioxidant capability. Our study suggests a novel possible strategy to prevent and/or ameliorate neurodegenerative diseases, such as PD.


2021 ◽  
Vol 12 ◽  
Author(s):  
N. Callizot ◽  
ML Campanari ◽  
L Rouvière ◽  
G Jacquemot ◽  
A. Henriques ◽  
...  

Huperzia serrata (Thunb.) Trevis is widely used in traditional asiatic medicine to treat many central disorders including, schizophrenia, cognitive dysfunction, and dementia. The major alkaloid, Huperzine A (HA), of H. serrata is a well-known competitive reversible inhibitor of acetylcholinesterase (AChE) with neuroprotective effects. Inspired by the tradition, we developed a green one-step method using microwave assisted extraction to generate an extract of H. serrata, called NSP01. This green extract conserves original neuropharmacological activity and chemical profile of traditional extract. The neuroprotective activity of NSP01 is based on a precise combination of three major constituents: HA and two phenolic acids, caffeic acid (CA) and ferulic acid (FA). We show that CA and FA potentiate HA-mediated neuroprotective activity. Importantly, the combination of HA with CA and FA does not potentiate the AChE inhibitory property of HA which is responsible for its adverse side effects. Collectively, these experimental findings demonstrated that NSP01, is a very promising plant extract for the prevention of Alzheimer’s disease and memory deficits.


2019 ◽  
Vol 1 (1) ◽  
pp. 68-74
Author(s):  
Lenny Anwar

Pentacyclic triterpenoid, betulinic acid (1) and phenolic, p-hydroxybenzoic acid (2), had been isolated for the first time from the stem bark of Vitex pubescens Vahl. The structure of compounds 1 and 2 was determined based on the interpretation of spectroscopic data including UV, IR, NMR (1H-NMR, 13C-NMR, HMQC, HMBC, COSY) and MS, as well as by comparison with those reported data.


Author(s):  
Farhana Yasmin ◽  
Md. R. Amin ◽  
Anowar Hosen ◽  
M.A. Kawsar Sarkar

The widening importance of carbohydrate derivatives as unrivaled potential antimicrobial and therapeutic drugs has attracted attentionto the synthesis of mannopyranoside derivatives. In the present study, regioselective 3-bromobenzoylation of methyl α-D-mannopyranoside (1) was carried out using the direct method and gave the corresponding 6-O-(3-bromobenzoyl) derivative (2) in excellent yield. A number of 2,3,4-tri-O-acyl derivatives (3–10) of this 6-substitution product using a wide variety of acylating agents were also prepared in order to obtain newer derivatives of synthetic and biological importance. The chemical structures of the newly synthesized compounds were ascertained by analyzing their physicochemical, elemental, and spectroscopic data. Additionally, the X-ray powder diffraction (XRD) of these acylated products was studiedfor quantitatively identifying crystalline compounds.Therefore, due to the importance of carbohydrates, it might be useful to develop a good method for the synthesis of carbohydrate-based drugs of the current global situation for health and disease


Sign in / Sign up

Export Citation Format

Share Document