scholarly journals Effect of the Immobilization Strategy on the Efficiency and Recyclability of the Versatile Lipase from Ophiostoma piceae

Molecules ◽  
2019 ◽  
Vol 24 (7) ◽  
pp. 1313 ◽  
Author(s):  
María Molina-Gutiérrez ◽  
Neumara Hakalin ◽  
Leonor Rodríguez-Sánchez ◽  
Lorena Alcaraz ◽  
Félix López ◽  
...  

The recombinant lipase from Ophiostoma piceae OPEr has demonstrated to have catalytic properties superior to those of many commercial enzymes. Enzymatic crudes with OPEr were immobilized onto magnetite nanoparticles by hydrophobicity (SiMAG-Octyl) and by two procedures that involve covalent attachment of the protein (mCLEAs and AMNP-GA), giving three nanobiocatalysts with different specific activity in hydrolysis of p-nitrophenyl butyrate (pNPB) and good storage stability at 4 °C over a period of 4 months. Free OPEr and the different nanobiocatalysts were compared for the synthesis of butyl esters of volatile fatty acids C4 to C7 in reactions containing the same lipase activity. The esterification yields and the reaction rates obtained with AMNP-GA-OPEr were in general higher or similar to those observed for the free enzyme, the mCLEAs-OPEr, and the non-covalent preparation SiMAG-Octyl-OPEr. The time course of the esterification of the acids C4 to C6 catalyzed by AMNP-GA-OPEr was comparable. The synthesis of the C7 ester was slower but very efficient, admitting concentrations of heptanoic acid up to 1 M. The best 1-butanol: acid molar ratio was 2:1 for all the acids tested. Depending on the substrate, this covalent preparation of OPEr maintained 80–96% activity over 7 cycles, revealing its excellent properties, easy recovery and recycling, and its potential to catalyze the green synthesis of chemicals of industrial interest.

2020 ◽  
Vol 40 (1) ◽  
pp. 84
Author(s):  
Nurin Imana Hidayati ◽  
Retno Indrati ◽  
Pudji Hastuti ◽  
Masahiro Ogawa

This study aims to combine two modification methods, namely enzymatic hydrolysis and covalent attachment with hydrophobic groups, to increase the emulsifying properties of gelatin. The experiment was conducted by using a completely randomized design with three replicates. Enzymatic hydrolysis of gelatin resulted in higher contents of free amino groups, which could be attached to hydrophobic groups. Gelatin hydrolysates covalently attached with the N-hydroxysuccinimide esters of C14:0 and C18:0 fatty acids at a molar ratio of 3.0 showed high emulsifying activity but low stability. Among the samples obtained, gelatin hydrolysate covalently attached with C18:0 at a molar ratio of 3.0 revealed the highest emulsifying activity; however, this sample cannot be considered the best emulsifier among the samples because of its low stability.


1987 ◽  
Vol 253 (5) ◽  
pp. E551-E564 ◽  
Author(s):  
C. Cobelli ◽  
G. Toffolo ◽  
D. M. Bier ◽  
R. Nosadini

In contrast to "weightless" radioactive tracers, stable isotope tracers have nonnegligible mass and are naturally present in the system, and the measured variable is a ratio of two isotopic species. These features do not allow stable isotopic tracer data analysis using straightforward analogy with radioactive tracer approaches, even though this practice is common. In this study, we present kinetic variables, models, and measurements for the analysis and interpretation of stable isotope tracer data. Assumptions and mathematical techniques for modeling the data when perturbation is both nonnegligible and negligible are discussed. Emphasis is placed on the rich information content of the dynamic portion of a stable isotope tracer curve and on the role of compartmental and noncompartmental modeling approaches for its interpretation. A presumed and commonly used analogy between the radioactive specific activity and stable isotopic enrichment is shown to be incorrect. We show that the proper analogue of specific activity is the tracer-to-tracee molar ratio. This variable is not a directly measurable one, but a formula is derived that allows its computation from the data. A method for reconstructing the time course in blood of the concentration component due to endogenous synthesis is presented. This allows measurement of the extent of the perturbation in the case where a nonweightless tracer is used. Special attention is given to data analysis originating from a multiple tracer experiment, a configuration necessary for studying more complex systems, e.g., the kinetics of interacting substrates.


1978 ◽  
Vol 39 (01) ◽  
pp. 193-200 ◽  
Author(s):  
Erwin F Workman ◽  
Roger L Lundblad

SummaryAn improved method for the preparation of bovine α-thrombin is described. The procedure involves the activation of partially purified prothrombin with tissue thromboplastin followed by chromatography on Sulfopropyl-Sephadex C-50. The purified enzyme is homogeneous on polyacrylamide discontinuous gel electrophoresis and has a specific activity toward fibrinogen of 2,200–2,700 N.I.H. U/mg. Its stability on storage in liquid media is dependent on both ionic strenght and temperature. Increasing ionic strength and decreasing temperature result in optimal stability. The denaturation of α-thrombin by guanidine hydrochloride was found to be a partially reversible process with the renatured species possessing properties similar to “aged” thrombin. In addition, the catalytic properties of a-thrombin covalently attached to agarose gel beads were also examined. The activity of the immobilized enzyme toward fibrinogen was affected to a much greater extent than was the hydrolysis of low molecular weight, synthetic substrates.


1968 ◽  
Vol 20 (03/04) ◽  
pp. 548-554
Author(s):  
J Gajewski ◽  
G Markus

SummaryA method for the standardization of human plasminogen is proposed, based on the stoichiometric interaction between plasminogen and streptokinase, resulting in inhibition of proteolytic activity. Activation of a constant amount of plasminogen with increasing amounts of streptokinase yields linearly decreasing activities, as a function of streptokinase, with a sharp transition to a constant residual level. The point of transition corresponds to complete saturation of plasmin with streptokinase in a 1:1 molar ratio, and is therefore a measure of the amount of plasminogen present initially, in terms of streptokinase equivalents. The equivalence point is independent of the kind of protein substrate used, buffer, pH, length of digestion and, within limits, temperature. The method, therefore, is not subject to the variations commonly encountered in the usual determination based on specific activity measurements.


1997 ◽  
Vol 77 (03) ◽  
pp. 535-539 ◽  
Author(s):  
J Schneider ◽  
R Hauser ◽  
H-H Hennies ◽  
J Korioth ◽  
G Steffens ◽  
...  

SummaryThe chimaeric molecule rscu-PA-40kDA/Hir (M23) comprises the kringle and protease domain of saruplase (rscu-PA) and a thrombin inhibitory domain fused to the C-terminus of the protease domain. The 27 amino acid long thrombin inhibitory domain contains a sequence directed to the active site of thrombin and a fragment from the C-terminal region of hirudin. 125I-radiolabelled M23 (0.03 µM) bound to thrombin that was immobilised onto CNBr-activated sepharose beads. Unlabelled M23 (0.01-10 |xM) and hirudin (0.001-10 µµM) concentra-tion-dependently displaced 125I-M23 from its binding to thrombin. Saruplase (up to 10 (iM) did not influence the thrombin binding of M23. The fibrinolytic properties of M23 and saruplase were compared in anaesthetized dogs with femoral artery and saphenous vein thrombosis. Under concomitant heparinization, the intravenous bolus injections of 1 mg/kg M23 or saruplase induced reperfusion of thrombotically occluded femoral arteries in 4 out of 5 treated animals in each case. There was one reocclusion in the M23-treated group. Time to reperfusion (23 ± 4 vs 25 ± 11 min) and maximal height of reperfusion blood flow (98 ± 21 vs 108 ± 15 % of baseline flow) did not differ significantly between the treatment groups. The time course of the lysis of incorporated 125I-fibrin radioactivity in thrombosed saphenous veins was similar after bolus injections of M23 and saruplase. The maximal dissolution of 125I-fibrin in the venous thrombosis model was 91 ± 1 % in M23-and 88 ± 5 % in saruplase-treated animals. Plasma levels of fibrinogen were not influenced and a2-antiplasmin levels were slightly reduced (-27 ± 3 %) after bolus injection of M23. In contrast, bolus injection of saruplase was accompanied by a significant decrease of fibrinogen (-55 ± 19 %) and a2-antiplasmin (-75 ±11%) plasma levels. Template bleeding times virtually did not differ before (2.8 ± 0.3 min) and 60 min after bolus injection of M23 (3.1 ± 0.3 min), whereas treatment with saruplase resulted in a significant prolongation of template bleeding time from 2.6 ± 0.2 min to 28 ± 13 min. It is concluded that the saruplase derivative M23, while inducing equieffective thrombolysis after intravenous bolus injection in dogs, causes much fewer haemostatic side effects than its parent molecule. The high thrombus-specific activity of M23 is tentatively attributed to its affinity to clot-bound thrombin.


1985 ◽  
Vol 108 (4) ◽  
pp. 511-517 ◽  
Author(s):  
Nandalal Bagchi ◽  
Birdie Shivers ◽  
Thomas R. Brown

Abstract. Iodine in excess is known to acutely inhibit thyroidal secretion. In the present study we have characterized the time course of the iodine effect in vitro and investigated the underlying mechanisms. Labelled thyroid glands were cultured in vitro in medium containing mononitrotyrosine, an inhibitor of iodotyrosine deiodinase. The rate of hydrolysis of labelled thyroglobulin was measured as the proportion of labelled iodotyrosines and iodothyronines recovered at the end of culture and was used as an index of thyroidal secretion. Thyrotrophin (TSH) administered in vivo acutely stimulated the rate of thyroglobulin hydrolysis. Addition of Nal to the culture medium acutely inhibited both basal and TSH-stimulated thyroglobulin hydrolysis. The effect of iodide was demonstrable after 2 h, maximal after 6 h and was not reversible upon removal of iodide. Iodide abolished the dibutyryl cAMP induced stimulation of thyroglobulin hydrolysis. Iodide required organic binding of iodine for its effect but new protein or RNA synthesis was not necessary. The inhibitory effects of iodide and lysosomotrophic agents such as NH4C1 and chloroquin on thyroglobulin hydrolysis were additive suggesting different sites of action. Iodide added in vitro altered the distribution of label in prelabelled thyroglobulin in a way that suggested increased coupling in the thyroglobulin molecule. These data indicate that 1) the iodide effect occurs progressively over a 6 h period, 2) continued presence of iodide is not necessary once the inhibition is established, 3) iodide exerts its action primarily at a post cAMP, prelysosomal site and 4) the effect requires organic binding of iodine, but not new RNA or protein synthesis. Our data are consistent with the hypothesis that excess iodide acutely inhibits thyroglobulin hydrolysis by increasing the resistance of thyroglobulin to proteolytic degradation through increased iodination and coupling.


Marine Drugs ◽  
2021 ◽  
Vol 19 (6) ◽  
pp. 320
Author(s):  
Arnaud Masselin ◽  
Antoine Rousseau ◽  
Stéphanie Pradeau ◽  
Laure Fort ◽  
Rodolphe Gueret ◽  
...  

Chitin oligosaccharides (COs) hold high promise as organic fertilizers in the ongoing agro-ecological transition. Short- and long-chain COs can contribute to the establishment of symbiotic associations between plants and microorganisms, facilitating the uptake of soil nutrients by host plants. Long-chain COs trigger plant innate immunity. A fine investigation of these different signaling pathways requires improving the access to high-purity COs. Here, we used the response surface methodology to optimize the production of COs by enzymatic hydrolysis of water-soluble chitin (WSC) with hen egg-white lysozyme. The influence of WSC concentration, its acetylation degree, and the reaction time course were modelled using a Box–Behnken design. Under optimized conditions, water-soluble COs up to the nonasaccharide were formed in 51% yield and purified to homogeneity. This straightforward approach opens new avenues to determine the complex roles of COs in plants.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 119
Author(s):  
Jamal Lasri ◽  
Matti Haukka ◽  
Hessa H. Al-Rasheed ◽  
Nael Abutaha ◽  
Ayman El-Faham ◽  
...  

The square planar complex [Pd(PT)Cl(H2O)]*H2O (HPT: 6-(3,5-dimethyl-1H-pyrazol-1-yl)-1,3,5-triazine-2,4(1H,3H)-dione) was obtained by the reaction of 2-methoxy-4,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)-1,3,5-triazine (MBPT) pincer ligand with PdCl2 in a molar ratio (1:1) under thermal conditions and using acetone as a solvent. The reaction proceeded via C-N cleavage of one C-N moiety that connects the pyrazole and s-triazine combined with the hydrolysis of the O-CH3 group. The reaction of the chloride salt of its higher congener (PtCl2) gave [Pt(3,5-dimethyl-1H-pyrazole)2Cl2]. The crystal structure of [Pd(PT)Cl(H2O)]*H2O complex is stabilized by inter- and intra-molecular hydrogen bonding interactions. Hirshfeld analysis revealed that the H...H (34.6%), O...H (23.6%), and Cl...H (7.8%) interactions are the major contacts in the crystal. The charges at Pd, H2O, Cl and PT are changed to 0.4995, 0.2216, −0.4294 and −0.2917 instead of +2, 0, −1 and −1, respectively, using the MPW1PW91 method. [Pd(PT)Cl(H2O)]*H2O complex has almost equal activities against MDA-MB-231 and MCF-7 cell lines with IC50 of 38.3 µg/mL.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 107
Author(s):  
Debra Wu ◽  
Douglas Vogus ◽  
Vinu Krishnan ◽  
Marta Broto ◽  
Anusha Pusuluri ◽  
...  

Liposome-based drug delivery systems have allowed for better drug tolerability and longer circulation times but are often optimized for a single agent due to the inherent difficulty of co-encapsulating two drugs with differing chemical profiles. Here, we design and test a prodrug based on a ribosylated nucleoside form of 5-fluorouracil, 5-fluorouridine (5FUR), with the final purpose of co-encapsulation with doxorubicin (DOX) in liposomes. To improve the loading of 5FUR, we developed two 5FUR prodrugs that involved the conjugation of either one or three moieties of tryptophan (W) known respectively as, 5FUR−W and 5FUR−W3. 5FUR−W demonstrated greater chemical stability than 5FUR−W3 and allowed for improved loading with fewer possible byproducts from tryptophan hydrolysis. Varied drug ratios of 5FUR−W: DOX were encapsulated for in vivo testing in the highly aggressive 4T1 murine breast cancer model. A liposomal molar ratio of 2.5 5FUR−W: DOX achieved a 62.6% reduction in tumor size compared to the untreated control group and a 33% reduction compared to clinical doxorubicin liposomes in a proof-of-concept study to demonstrate the viability of the co-encapsulated liposomes. We believe that the new prodrug 5FUR−W demonstrates a prodrug design with clinical translatability by reducing the number of byproducts produced by the hydrolysis of tryptophan, while also allowing for loading flexibility.


1968 ◽  
Vol 46 (14) ◽  
pp. 2409-2413 ◽  
Author(s):  
Shmuel Migdal ◽  
David Gertner ◽  
Albert Zilkha

The controlled basic hydrolysis of tetrabutyl-1,3-dichlorodistannoxane under interfacial conditions was found to lead to α,ω-dichlorooligostannoxanes, Cl(SnBu2O)nSnBu2Cl, n being controlled by the molar ratio of base to distannoxane. These oligostannoxanes were identical with those prepared by other methods. They were used in the preparation of oligostannoxane dicarboxylates and organotin polyesters, having stannoxane recurring units in their backbone, by reaction with the sodium salts of mono- or dicarboxylic acids under interfacial conditions.


Sign in / Sign up

Export Citation Format

Share Document