scholarly journals Improving the Stability of Oil Body Emulsions from Diverse Plant Seeds Using Sodium Alginate

Molecules ◽  
2019 ◽  
Vol 24 (21) ◽  
pp. 3856
Author(s):  
Zhang ◽  
Yang ◽  
Wang ◽  
Huang ◽  
Nishinari ◽  
...  

In this study, peanut, sesame, and rapeseed oil bodies (OBs) were extracted by the aqueous medium method. The surface protein composition, microstructure, average particle size d4, 3, ζ-potential of the extracted OBs in aqueous emulsion were characterized. The stability of the OB emulsions was investigated. It was found that different OB emulsions contained different types and contents of endogenous and exogenous proteins. Aggregation at low pHs (<6) and creaming at high pHs (7 and 8) both occurred for all of three OB emulsions. Sodium alginate (ALG) was used to solve the instability of OB emulsions under different conditions—low concentration of ALG improved the stability of OB emulsions below and near the isoelectric point of the OBs, through electrostatic interaction. While a high concentration of ALG improved the OB emulsion stability through the viscosity effect at pH 7. The OB emulsions stabilized by ALG were salt-tolerant and freeze–thaw resistant.

Author(s):  
Sumit Kumar ◽  
Dinesh Chandra Bhatt

Fabrication and evaluation of the Isoniazid loaded sodium alginate nanoparticles (NPs) was main objective of current investigation. These NPs were engineered using ionotropic gelation technique. The NPs fabricated, were evaluated for average particle size, encapsulation efficiency, drug loading, and FTIR spectroscopy along with in vitro drug release. The particle size, drug loading and encapsulation efficiency of fabricated nanoparticles were ranging from 230.7 to 532.1 nm, 5.88% to 11.37% and 30.29% to 59.70% respectively. Amongst all batches studied formulation F-8 showed the best sustained release of drug at the end of 24 hours.


Pharmaceutics ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 21 ◽  
Author(s):  
Yumei Lian ◽  
Xuerui Wang ◽  
Pengcheng Guo ◽  
Yichen Li ◽  
Faisal Raza ◽  
...  

Arsenic trioxide (ATO) has a significant effect on the treatment of acute promyelocytic leukemia (APL) and advanced primary liver cancer, but it still faces severe side effects. Considering these problems, red blood cell membrane-camouflaged ATO-loaded sodium alginate nanoparticles (RBCM-SA-ATO-NPs, RSANs) were developed to relieve the toxicity of ATO while maintaining its efficacy. ATO-loaded sodium alginate nanoparticles (SA-ATO-NPs, SANs) were prepared by the ion crosslinking method, and then RBCM was extruded onto the surface to obtain RSANs. The average particle size of RSANs was found to be 163.2 nm with a complete shell-core bilayer structure, and the average encapsulation efficiency was 14.31%. Compared with SANs, RAW 264.7 macrophages reduced the phagocytosis of RSANs by 51%, and the in vitro cumulative release rate of RSANs was 95% at 84 h, which revealed a prominent sustained release. Furthermore, it demonstrated that RSANs had lower cytotoxicity as compared to normal 293 cells and exhibited anti-tumor effects on both NB4 cells and 7721 cells. In vivo studies further showed that ATO could cause mild lesions of main organs while RSANs could reduce the toxicity and improve the anti-tumor effects. In brief, the developed RSANs system provides a promising alternative for ATO treatment safely and effectively.


2020 ◽  
Vol 23 (10) ◽  
pp. 338-345
Author(s):  
Ngatijo Ngatijo ◽  
Restina Bemis ◽  
Abdul Aziz ◽  
Rahmat Basuki

Chromium (VI) in the form of chromate anions that have toxic properties needs to be overcome. This study aims to reinforce cationic sorbent quaternary amine-modified silica with magnetite (QAMS-Fe3O4) to adsorb chromate ions. QAMS prepared by reflux methylation ammine modified silica (AMS) obtained from destruction silicate from rice husk ash followed by the addition of 3-APTMS. Characterization QAMS-Fe3O4 by FT-IR showed successfully of methylation process indicated by disappearing absorbance at 1388 cm-1, and emerging absorbance at 2939 cm-1 in QAMS and QAMS-Fe3O4 indicated a transformation of N-H from -NH2 group to [-N+(CH3)3]. XRD analysis denotes 2θ = 30.15°, 35.53°, 43.12°, 57.22°, and 62.90° (JCPDS No. 00-033-0664) fathomed as a characteristic peak of magnetite. SEM-EDX reveals the homogenous topological spherical form with an average particle size 0.006 µm that is dominated by Si element (52.81%) with magnetic moment value = 34.1 emu/g. The stability test shows that this material stable in an acid condition. The adsorption of chromate ions was conducted by the SPA method. Optimal pH obtained by pH range 4-7 with more than 90% adsorbed chromate ions. Variation of increasing series flow rate from 0.05 to 1.5 mL min-1 resulted in decreased adsorbed chromate ions. The use of SPA methods offered simpler and easier handling than the batch method without overriding the adsorption process effectiveness.


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2360
Author(s):  
Seyedehmaryam Moosavi ◽  
Rita Yi Man Li ◽  
Chin Wei Lai ◽  
Yusliza Yusof ◽  
Sinyee Gan ◽  
...  

In this study, activated carbon (AC) from coconut shell, as a widely available agricultural waste, was synthesised in a simple one-step procedure and used to produce a magnetic Fe3O4/AC/TiO2 nano-catalyst for the degradation of methylene blue (MB) dye under UV light. Scanning electron microscopy revealed that TiO2 nanoparticles, with an average particle size of 45 to 62 nm, covered the surface of the AC porous structure without a reunion of its structure, which according to the TGA results enhanced the stability of the photocatalyst at high temperatures. The photocatalytic activities of synthesised AC, commercial TiO2, Fe3O4/AC, and Fe3O4/AC/TiO2 were compared, with Fe3O4/AC/TiO2 (1:2) exhibiting the highest catalytic activity (98%). Furthermore, evaluation of the recovery and reusability of the photocatalysts after treatment revealed that seven treatment cycles were possible without a significant reduction in the removal efficiency.


2019 ◽  
Vol 948 ◽  
pp. 140-145
Author(s):  
Al Dina N. Khoerunisa ◽  
Prihati Sih Nugraheni ◽  
Mohammad Fahrurrozi ◽  
Wiratni Budhijanto

The aqueous dispersion of nanochitosan was prepared by polyelectrolyte complex (PEC) method with various mixing ratios of chitosan and polyanions, i.e., chitosan-glucomannan, chitosan-hyaluronic acid, and chitosan-Arabic gum. The formation of nanochitosan was carried out by adding the polyanion solution dropwise into the acid solution of chitosan. The study aimed to determine the best polyanion among the variations tested in this study, concerning the targeted particle size and the stability of the dispersion over time. Particle size distribution was observed by Particle Size Analyzer (PSA). The result indicated that Arabic gum gave the smallest average particle size, i.e. 192.5 nm, at a chitosan/polyanion mass ratio of 3:1 and pH value of 4.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Zsuzsanna Kuklenyik ◽  
John R Barr ◽  
James L Pirkle ◽  

Lipoproteins (Lps) are large molecular assembles formed by lipid and apolipoprotein constituents. The physical metric of Lps as metabolically functional entities is particle concentration in serum or plasma (Lp-P). However, the metabolic functions of Lp particles is determined by their lipid/protein composition and structure. To be able to determine both Lp composition and Lp-P, a volumetric approach is required, as demonstrated by Segrest et al and other groups. In this work the volumetric approach was implemented but with applicability to population studies. The workflow included size based separation of Lps by asymmetric flow field-flow fractionation while collecting fractions with 1-1.5 nm increments in the range of 7-15 nm (HDL), 20-30 nm (LDL) and >30 nm Lps (40 fractions in total from 0.1 mL serum aliquots). The average particle size in each fraction was measured by dynamic light scattering. Three high throughput, parallel LC-MS/MS based methods were developed to quantify main non-polar lipids (FC, CE and TG), phospholipids (PC, SM, PE, PI and LPC), and apolipoproteins (apos A-I, A-II, A-IV, B, C-I, C-II, C-III and E). Quantification of particle size and all major Lp components was achieved with 4-15% CVs. Overall accuracy of the methods was demonstrated by ApoB-100/LDL-P molar ratios of 0.7-1.3 (vs. 1 expected) in the 22-26 nm maximum LDL size range. In the 7.5-13 nm size range, ApoA-I/HDL-P was 0.7-3.5 and ApoA-II/HDL-P of 0.5-2.5. Using the calculated Lp-P values, average individual analyte/Lp-P molar ratios were calculated in each fraction. The workflow was applied to 120 patient samples with wide range of Total-C and Total-TG levels. Multivariate response surface modeling was used to show significant correlations among individual lipid/Lp-P and apolipoprotein/Lp-P molar ratios. For example, with correction for particle size, the correlations of apoC-III/Lp-P and FC/Lp-P with SM/Lp-P, PC/Lp-P, TG/Lp-P and CE/Lp-P were determined, showing the effect of surface lipid and core lipid composition on apoC-III and FC binding to HDL and LDL particles, while also revealing significant cross effects among Lp components. By using <0.1 mL serum or plasma, the workflow is applicable to archived samples collected in large cohort studies.


1961 ◽  
Vol 34 (2) ◽  
pp. 433-445 ◽  
Author(s):  
E. Schmidt ◽  
P. H. Biddison

Abstract Knowledge of mass distribution of particle sizes in latex is very important to the latex technologist. Therefore, it is desirable to have available a simple method for the determination of mass distribution of particle sizes. This paper presents a method, based on fractional creaming of latex with sodium alginate, which can be used in any laboratory without special equipment. The method is particularly advantageous for analyzing latexes of very wide particle size distributions. When analyzed with an electron microscope, these latexes require counting a very large number of particles. McGavack found that partial creaming of normal hevea latex with ammonium alginate gives concentrates of larger average particle size than the original latex. He found that the average particle size in the cream approaches that of the original latex as the amount of creaming agent is increased. In a previous paper from this laboratory, Schmidt and Kelsey demonstrated that the phenomenon of fractionation according to particle size with increasing amounts of creaming agent is applicable in a wide variety of anionic latex systems and in colloidal silica. Their results indicated also the existence of a quantitative relationship, independent of the nature of the dispersed particles, between the concentration of creaming agent and size of creamed particles. Maron confirmed fractionation with respect to particle size as a consequence of partial creaming with alginate. He showed that the mass average particle sizes of fractions, determined optically, cumulate to that of the original latex. Although the previous paper by Schmidt and Kelsey implied the basic concept of a method of determining particle size distribution by fractional creaming, it was not exploited at that time. In order to adapt the fractional creaming phenomenon to a quantitative method for particle size determination, we required a more precise knowledge of the relation between creaming agent concentration and size of particles creamed. It was proposed to establish this relationship with the aid of the electron microscope. Various factors influencing the creaming of latex, such as polymer concentration, electrolyte, soap content, and variability of the creaming agent, had to be considered in standardizing the creaming procedure.


e-Polymers ◽  
2007 ◽  
Vol 7 (1) ◽  
Author(s):  
Shuangxi Xing ◽  
Guoku Zhao

AbstractPolypyrrole (PPy) dispersion was prepared using FeCl3·6H2O as oxidant in the presence of sodium dodecylbenzenesulfonate (SDBS) as surfactant. The formation of the micelles and the electrostatic interaction between PPy and SDBS were considered the driving forces for the formation and stability of the dispersion. UV/Vis/NIR, FTIR spectra and SEM images were studied to confirm the structure and morphology of the PPy dispersion, respectively. Polymerization of pyrrole under different preparation conditions including the concentration of the surfactant, the pyrrole monomer and the oxidant and also the addition of acid were carried out in order to investigate their effects on the stability and average particle size of the dispersions. The conductivity of the resulting PPy particles was measured and a comparison between the PPy and polyaniline dispersion formed with SDBS as surfactant was also given.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Susanne R. Youngren ◽  
Rakesh K. Tekade ◽  
Brianne Gustilo ◽  
Peter R. Hoffmann ◽  
Mahavir B. Chougule

The clinical utility of siRNA therapy has been hampered due to poor cell penetration, nonspecific effects, rapid degradation, and short half-life. We herewith proposed the formulation development of STAT6 siRNA (S6S) nanotherapeutic agent by encapsulating them within gelatin nanocarriers (GNC). The prepared nanoformulation was characterized for size, charge, loading efficiency, release kinetics, stability, cytotoxicity, and gene silencing assay. The stability of S6S-GNC was also assessed under conditions of varying pH, serum level, and using electrophoretic assays.In vitrocytotoxicity performance was evaluated in human adenocarcinoma A549 cells following MTT assay. The developed formulation resulted in an average particle size, surface charge, and encapsulation efficiency as70±6.5 nm,+10±1.5 mV, and85±4.0%, respectively. S6S-GNC showed an insignificant (P<0.05) change in the size and charge in the presence of buffer solutions (pH 6.4 to 8.4) and FBS (10% v/v). A549 cells were treated with native S6S, S6S-lipofectamine, placebo-GNC, and S6S-GNC using untreated cells as a control. It was observed that cell viability was decreased significantly with S6S-GNC by55±4.1%(P<0.001) compared to native S6S (2.0±0.55%) and S6S-lipofectamine complex (40±3.1%). This investigation infers that gelatin polymer-based nanocarriers are a robust, stable, and biocompatible strategy for the delivery of siRNA.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Soumaya El Bouchikhi ◽  
Philippe Pagès ◽  
Azeddine Ibrahimi ◽  
Yahya Bensouda

Abstract Background In order to improve the taste acceptability of certain nutritional oils, it has been decided in this study to introduce them in an emulsion whose surfactant is casein, then to carry out a lacto-fermentation, leading to a dairy-like product with added nutritional value and health benefit. In this context, a plan of mixtures has been proposed for the preparation of emulsions based on argan oil, sodium caseinate and starch, with concentrations ranged between (10–20%) and (0–2%) and (0–1.5%) respectively. All emulsions were homogenized at two high stirring velocities (10,000–20,000 rpm) and two stirring times (5–20 min). The physical stability was assessed by visual analysis and microstructural measurements. The Creaming index was calculated for selected emulsions to predict their creaming behavior. Results All emulsions showed a creaming behavior except one emulsion that required the highest values of all factors, which showed the highest creaming index with an average particle size of 11.27 μm. The absence or the variation of one or all factors led to various degrees of instabilities verified in all other emulsions. Due to the synergistic action of all parameters, the emulsion stability was attributed to the reduction of droplets size, the increase of continuous phase viscosity and the decrease of coalescence. Conclusion The parameters that played a major role in the stability of the emulsion consists of: stirring velocity and time, sodium caseinate/oil ratio and starch/sodium caseinate ratio. The underlying structure and the interaction of the fluid droplets within the solid like product is what holds the stability of the product against settling or separation during fermentation.


Sign in / Sign up

Export Citation Format

Share Document