scholarly journals STAT6 siRNA Matrix-Loaded Gelatin Nanocarriers: Formulation, Characterization, andEx VivoProof of Concept Using Adenocarcinoma Cells

2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Susanne R. Youngren ◽  
Rakesh K. Tekade ◽  
Brianne Gustilo ◽  
Peter R. Hoffmann ◽  
Mahavir B. Chougule

The clinical utility of siRNA therapy has been hampered due to poor cell penetration, nonspecific effects, rapid degradation, and short half-life. We herewith proposed the formulation development of STAT6 siRNA (S6S) nanotherapeutic agent by encapsulating them within gelatin nanocarriers (GNC). The prepared nanoformulation was characterized for size, charge, loading efficiency, release kinetics, stability, cytotoxicity, and gene silencing assay. The stability of S6S-GNC was also assessed under conditions of varying pH, serum level, and using electrophoretic assays.In vitrocytotoxicity performance was evaluated in human adenocarcinoma A549 cells following MTT assay. The developed formulation resulted in an average particle size, surface charge, and encapsulation efficiency as70±6.5 nm,+10±1.5 mV, and85±4.0%, respectively. S6S-GNC showed an insignificant (P<0.05) change in the size and charge in the presence of buffer solutions (pH 6.4 to 8.4) and FBS (10% v/v). A549 cells were treated with native S6S, S6S-lipofectamine, placebo-GNC, and S6S-GNC using untreated cells as a control. It was observed that cell viability was decreased significantly with S6S-GNC by55±4.1%(P<0.001) compared to native S6S (2.0±0.55%) and S6S-lipofectamine complex (40±3.1%). This investigation infers that gelatin polymer-based nanocarriers are a robust, stable, and biocompatible strategy for the delivery of siRNA.

Author(s):  
Kumar Nishchaya ◽  
Swatantra K.S. Kushwaha ◽  
Awani Kumar Rai

Background: Present malignant cancer medicines has the advancement of magnetic nanoparticles as delivery carriers to magnetically accumulate anticancer medication in malignant growth tissue. Aim: In the present investigation, a silica nanoparticles (MSNs) stacked with hydroxyurea were combined and was optimized for dependent and independent variables. Method: In this study, microporous silica nanoparticle stacked with neoplastic medication had been prepared through emulsification followed with solvent evaporation method. Prepared MSNs were optimized for dependent and independent variables. Different formulations were prepared with varying ratio of polymer, lipid and surfactant which affects drug release and kinetics of drug release pattern. The obtained MSNs were identified by FTIR, SEM, drug entrapment, in-vitro drug release, drug release kinetics study, stability testing in order to investigate the nanoparticle characteristics. Results: The percentage drug entrapment of the drug for the formulations F1, F2, F3, was found to be 27.78%, 65.52% and 48.26%. The average particle size for F2 formulation was found to be 520 nm through SEM. The cumulative drug release for the formulations F1, F2, F3 was found to be 64.17%, 71.82% and 32.68%. The formulations were found to be stable which gives controlled drug delivery for 6 hours. Conclusion: From the stability studies data it can be culminated that formulations are most stable when stored at lower temperature or in refrigerator i.e. 5˚C ± 3˚C. It can be concluded that MSN’s loaded with hydroxyurea is a promising approach towards the management of cancer due to its sustained release and less side effects.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1000 ◽  
Author(s):  
Ik Sup Jin ◽  
Min Jeong Jo ◽  
Chun-Woong Park ◽  
Youn Bok Chung ◽  
Jin-Seok Kim ◽  
...  

Fenbendazole (FEN), a broad-spectrum benzimidazole anthelmintic, suppresses cancer cell growth through various mechanisms but has low solubility and achieves low blood concentrations, which leads to low bioavailability. Solubilizing agents are required to prepare poorly soluble drugs for injections; however, these are toxic. To overcome this problem, we designed and fabricated low-toxicity Soluplus® polymeric micelles encapsulating FEN and conducted toxicity assays in vitro and in vivo. FEN-loaded Soluplus® micelles had an average particle size of 68.3 ± 0.6 nm, a zeta potential of −2.3 ± 0.2 mV, a drug loading of 0.8 ± 0.03%, and an encapsulation efficiency of 85.3 ± 2.9%. MTT and clonogenic assays were performed on A549 cells treated with free FEN and FEN-loaded Soluplus® micelles. The in vitro drug release profile showed that the micelles released FEN more gradually than the solution. Pharmacokinetic studies revealed lower total clearance and volume of distribution and higher area under the curve and plasma concentration at time zero of FEN-loaded Soluplus® micelles than of the FEN solution. The in vivo toxicity assay revealed that FEN-loaded Soluplus® micelle induced no severe toxicity. Therefore, we propose that preclinical and clinical safety and efficacy trials on FEN-loaded Soluplus® micelles would be worthwhile.


2021 ◽  
Vol 68 (4) ◽  
pp. 861-881
Author(s):  
Trupti Powar ◽  
Ashok Hajare ◽  
Ravindra Jarag ◽  
Sopan Nangare

With the application of the quality by design (QbD) approach, a high-pressure homogenizer (HPH) methodology was employed to develop methotrexate nanosuspension (MTX-NS) to boost bioavailability. The Ishikawa diagram was used to analyze potential risk factors in formulation development. To screen and study the impact of various formulation and process factors on the critical quality attributes (CQA), the Placket–Burman design and central composite design were utilized. The number of HPH cycles, poloxamer 188 concentration, and tween 80 concentration were shown to be significant parameters (P<0.05), that were further optimized using Central Composite Design. The zeta potential of optimized lyophilized MTX-NS was determined to be –11.6 ± 7.52 mV and the average particle size was 260 ± 0.25 nm. In vitro cytotoxicity experiments revealed a greater than 80% inhibition, with apoptotic cells shrinking, fragmentation, and cell death. Furthermore, the Cmax and AUC0-t were increased by 2.53 and 8.83 folds, respectively. The relative bioavailability of MTX-NS was found to be 8.83 times higher than that of MTX-aqueous dispersion. As a result, the QbD method resulted in the development of a lyophilized MTX-NS with process understanding and control based on quality risk management.


INDIAN DRUGS ◽  
2017 ◽  
Vol 54 (01) ◽  
pp. 20-27
Author(s):  
H. B Samal ◽  
I. J. Das ◽  
P. N. Murthy ◽  

The present study involves the design and characterization of floating microspheres with gabapentin as model drug for prolongation of gastric residence time. Gabapentin floating microspheres were prepared by o/w/o emulsification solvent diffusion technique using ethyl cellulose as the rate controlling polymer at various concentrations. The shape and surface morphology of microspheres were characterized by optical and scanning electron microscopy. Absence of drug-polymer interaction was confirmed by FTIR analysis. In vitro drug release studies were performed and drug release kinetics was evaluated using the linear regression method. Effects of polymer concentration, solvent composition, particle size, drug entrapment efficiency and drug release were also studied. The synthesized microspheres exhibited prolonged drug release (> 12 h) and remained buoyant for > 24 h. The drug entrapment efficiency was in the range 46-70 %. At higher polymer concentration, the average particle size was increased and the drug release rate decreased. In vitro studies revealed diffusion-controlled drug release from the microspheres. Among all the formulations (F1-F5), F4 is the optimized formulation.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 808
Author(s):  
Ahmed Al Saqr ◽  
El-Sayed Khafagy ◽  
Ahmed Alalaiwe ◽  
Mohammed F. Aldawsari ◽  
Saad M. Alshahrani ◽  
...  

Green synthesis of gold nanoparticles (GNPs) with plant extracts has gained considerable interest in the field of biomedicine. Recently, the bioreduction nature of herbal extracts has helped to synthesize spherical GNPs of different potential from gold salt. In this study, a fast ecofriendly method was adopted for the synthesis of GNPs using fresh peel (aqueous) extracts of Benincasa hispida, which acted as reducing and stabilizing agents. The biosynthesized GNPs were characterized by UV–VIS and Fourier transform infrared spectroscopy, transmission electron microscopy (TEM), and dynamic light scattering. In addition, the in vitro antibacterial and anticancer activities of synthesized GNPs were investigated. The formation of gold nanoparticles was confirmed by the existence of a sharp absorption peak at 520 nm, corresponding to the surface plasmon resonance (SPR) band of the GNPs. TEM analysis revealed that the prepared GNPs were spherical in shape and had an average particle size of 22.18 ± 2 nm. Most importantly, the synthesized GNPs exhibited considerable antibacterial activity against different Gram-positive and Gram-negative bacteria. Furthermore, the biosynthesized GNPs exerted remarkable in vitro cytotoxicity against human cervical cancer cell line, while sparing normal human primary osteoblast cells. Such cytotoxic effect was attributed to the increased production of reactive oxygen species (ROS) that contributed to the damage of HeLa cells. Collectively, peel extracts of B. hispida can be efficiently used for the synthesis of GNPs, which can be adopted as a natural source of antimicrobial and anticancer agent.


2019 ◽  
Vol 829 ◽  
pp. 263-269
Author(s):  
Denny Nurdin ◽  
Andri Hardiansyah ◽  
Elsy Rahimi Chaldun ◽  
Anti Khoerul Fikkriyah ◽  
Hendra Dian Adhita Dharsono ◽  
...  

Exploration of natural compound for the treatment of dental-related problems are gaining of interest for enhancing therapeutic efficacy of the drugs delivery system. In this study, we have prepared terpenoid, which have been isolated from Myrmecodia pendens Merr & Perry from Papua Island, Indonesia, to be encapsulated in Polylactic-co-glycolic acid (PLGA), as the most widely used biodegradable polymer for biomedical applications, through one step single-emulsion method followed by subsequent coating by poly (vinyl alcohol) (PVA). The resultant of terpenoid-loaded PLGA microparticles were characterized systematically through scanning electron microscope and Fourier-transform infrared spectroscopy. In vitro drug release test was evaluated through dialysis method. Antibacterial test was conducted against Enterococcus faecalis as a model for persistent bacteria that causes root canal infections. The results showed that terpenoid-loaded PLGA microparticles were developed in spherical morphology with an average particle size of around 1-2μm. Terpenoid released from PLGA compartment at pH 6.5 and temperature of 37°C through a controlled-release profile mechanism with enhanced prolonged release. The bacterial assay result showed that terpenoid-loaded PLGA microparticles could reduce Enterococcus faecalis, effectively. Eventually, these result show that terpenoid-loaded PLGA microparticles as unique natural product-based extract could be developed as a potential naturally-based drug for dental-related diseases applications.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1721
Author(s):  
Yaru Wu ◽  
Zhucheng Yin ◽  
Xuejiao Qie ◽  
Yao Chen ◽  
Maomao Zeng ◽  
...  

The interaction of soy protein isolate (SPI) and its hydrolysates (SPIHs) with cyanidin-3-O-glucoside (C3G) at pH 7.0 were investigated to clarify the changes in the antioxidant capacity of their complexes. The results of intrinsic fluorescence revealed that C3G binds to SPI/SPIHs mainly through hydrophobic interaction, and the binding affinity of SPI was stronger than that of SPIHs. Circular dichroism and Fourier-transform infrared spectroscopy analyses revealed that the interaction with C3G did not significantly change the secondary structures of SPI/SPIHs, while the surface hydrophobicity and average particle size of proteins decreased. Furthermore, the SPI/SPIHs-C3G interaction induced an antagonistic effect on the antioxidant capacity (ABTS and DPPH) of the complex system, with the masking effect on the ABTS scavenging capacity of the SPIHs-C3G complexes being lower than that of the SPI-C3G complexes. This study contributes to the design and development of functional beverages that are rich in hydrolysates and anthocyanins.


Author(s):  
Nani Tadhi ◽  
Himansu Chopra ◽  
Gyanendra Kumar Sharma

Transdermal patch is a drug delivery device in which the drugs are incorporated and is design in such a way that it releases the drug in sustained and at predetermined rate to deliver the drug through the skin to the systemic circulation painlessly. The aim of this research study was to formulate a controlled and sustained release transdermal matrix type patch of Methimazole. The matrix patch was prepared by solvent casting method using a various polymer in different concentration, HPMC (hydrophilic), Eudragit RL100 and Ethyl cellulose (hydrophobic) polymer. Total 9 prototype formulation were prepared and it was subjected for various evaluation test; weight uniformity, Folding endurance, thickness, Drug content, percent moisture content, percent Moisture uptake and In-vitro drug release study using Franz diffusion cell. The in-vitro CDR% data was fit into kinetics model to see the release kinetics from the patches. The Formulation F5 was choosen as a best formulation according to in-vitro drug release study. The in-vitro release was found 81.12 % in 12 hours, it followed zero order kinetics. The nature of polymer and concentration ratio of polymers plays a crucial role for obtaining a good transdermal patch design; therefore optimisation is very important step to formulate a desired TDDS. Therefore the result of the study encourages a further study and is hopeful that the present study would contribute to the recent pharmaceutical research for formulation development.


2017 ◽  
Vol 6 (6) ◽  
pp. 517-526 ◽  
Author(s):  
Permender Rathee ◽  
Anjoo Kamboj ◽  
Shabir Sidhu

AbstractBackground:Piperine helps in the improvement of bioavailability through pharmacokinetic interaction by modulating metabolism when administered with other drugs. Nisoldipine is a substrate for cytochrome P4503A4 enzymes. The study was undertaken to assess the influence of piperine on the pharmacokinetics and pharmacodynamics of nisoldipine nanoparticles in rats.Methods:Optimization studies of nanoparticles were performed using Taguchi L9 orthogonal array, and the nanoparticles were formulated by the precipitation method. The influence of piperine and nanoparticles was evaluated by means of in vivo kinetic and dynamic studies by oral administration in rats.Results:The entrapment efficiency, drug loading, ζ potential, and average particle size of optimized nisoldipine-piperine nanoparticles was 89.77±1.06%, 13.6±0.56%, −26.5 mV, and 132±7.21 nm, respectively. The in vitro release in 0.1 n HCl and 6.8 pH phosphate buffer was 96.9±0.48% and 98.3±0.26%, respectively. Pharmacokinetic studies showed a 4.9-fold increase in oral bioavailability and a >28.376±1.32% reduction in systemic blood pressure by using nanoparticles as compared to control (nisoldipine suspension) in Wistar rats.Conclusion:The results revealed that piperine being an inhibitor of cytochrome P4503A4 enzymes enhanced the bioavailability of nisoldipine by 4.9-fold in nanoparticles.


2022 ◽  
Vol 8 ◽  
Author(s):  
Ao Li ◽  
Aixia Zhu ◽  
Di Kong ◽  
Chunwei Wang ◽  
Shiping Liu ◽  
...  

For improving solubility and bioaccessibility of phytosterols (PS), phytosterol nanoparticles (PNPs) were prepared by emulsification–evaporation combined high-pressure homogenization method. The organic phase was formed with the dissolved PS and soybean lecithin (SL) in anhydrous ethanol, then mixed with soy protein isolate (SPI) solution, and homogenized into nanoparticles, followed by the evaporation of ethanol. The optimum fabrication conditions were determined as PS (1%, w/v): SL of 1:4, SPI content of 0.75% (w/v), and ethanol volume of 16 ml. PNPs were characterized to have average particle size 93.35 nm, polydispersity index (PDI) 0.179, zeta potential −29.3 mV, and encapsulation efficiency (EE) 97.3%. The impact of temperature, pH, and ionic strength on the stability of fabricated PNPs was determined. After 3-h in vitro digestion, the bioaccessibility of PS in nanoparticles reached 70.8%, significantly higher than the 18.2% of raw PS. Upon freeze-drying, the particle size of PNPs increased to 199.1 nm, resulting in a bimodal distribution. The solubility of PS in water could reach up to 2.122 mg/ml, ~155 times higher than that of raw PS. Therefore, this study contributes to the development of functional PS-food ingredients.


Sign in / Sign up

Export Citation Format

Share Document