scholarly journals Synthesis, Structure and In Vitro Cytotoxic Activity of Novel Cinchona—Chalcone Hybrids with 1,4-Disubstituted- and 1,5-Disubstituted 1,2,3-Triazole Linkers

Molecules ◽  
2019 ◽  
Vol 24 (22) ◽  
pp. 4077 ◽  
Author(s):  
Jernei ◽  
Duró ◽  
Dembo ◽  
Lajkó ◽  
Takács ◽  
...  

By means of copper(I)-and ruthenium(II)-catalyzed click reactions of quinine- and quinidine-derived alkynes with azide-substituted chalcones a systematic series of novel cinchona-chalcone hybrid compounds, containing 1,4-disubstituted- and 1,5-disubstituted 1,2,3-triazole linkers, were synthesized and evaluated for their cytotoxic activity on four human malignant cell lines (PANC-1, COLO-205, A2058 and EBC-1). In most cases, the cyclization reactions were accompanied by the transition-metal-catalyzed epimerization of the C9-stereogenic centre in the cinchona fragment. The results of the in vitro assays disclosed that all the prepared hybrids exhibit marked cytotoxicity in concentrations of low micromolar range, while the C9-epimerized model comprising quinidine- and (E)-1-(4-(3-oxo-3-(3,4,5-trimethoxyphenyl)prop-1-en-1-yl)phenyl) fragments, connected by 1,5-disubstituted 1,2,3-triazole linker, and can be regarded as the most potent lead of which activity is probably associated with a limited conformational space allowing for the adoption of a relatively rigid well-defined conformation identified by DFT modelling. The mechanism of action of this hybrid along with that of a model with markedly decreased activity were approached by comparative cell-cycle analyses in PANC-1 cells. These studies disclosed that the hybrid of enhanced antiproliferative activity exerts significantly more extensive inhibitory effects in subG1, S and G2/M phases than does the less cytotoxic counterpart.

1999 ◽  
Vol 47 (3) ◽  
pp. 165-168
Author(s):  
Dan Eisikowitch ◽  
Hazel Y. Wetzstein

Cultivated and wild almonds are self-incompatible and thus require outcrossing by insect pollinators to produce viable seed. In commercial production, considerable efforts are directed towards placement and selection of cultivars for cross-pollination. However, since honeybees do not distinguish between the different cultivars, stigmas are usually covered by a mixture of both compatible and incompatible pollen. Using in vitro assays, we demonstrated that pollen extracts promoted germination in self pollen with no inhibitory effects observed. Elemental analyses of pollen extracts showed that enhanced levels of Ca, Mg, K, Na, and P were eluted from the grains. From this, we raise the question of possible interaction between compatible and incompatible pollen, and speculate that incompatible pollen grains may support and enhance germination of adjacent compatible pollen.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 87-87
Author(s):  
Wataru Nogami ◽  
Akiko Yamane ◽  
Takanori Nakamura ◽  
Eri Matsuki ◽  
Yasuo Ikeda ◽  
...  

Abstract The proteasome inhibitor bortezomib has therapeutic activity in patients with multiple myeloma. The most common adverse event from its application is thrombocytopenia, which has kinetics that differ from those induced by other cytotoxic agents. After treatment with bortezomib, platelet counts usually decrease within a couple of days but rapidly recover toward baseline during the rest periods between each cycle. The lowest count of platelets in each cycle does not worsen during the 8 courses of bortezomib treatment. Furthermore, bortezomib does not induce any cytotoxic injury in megakaryocyte in the murine model. Therefore, we postulated that bortezomib-induced thrombocytopenia is caused by inhibition of the platelet releasing process without megakaryocyte toxicity. In vitro assays using human bone marrow-derived CD34-positive hematopoietic stem cells revealed that bortezomib did not inhibit colony formation and endomitosis of human primary megakaryocytes in the presence of recombinant human thrombopoietin (rhTPO). As proplatelet formation (PPF) is often used as the indicator of the platelet releasing process in vitro, we evaluated the inhibitory effects of bortezomib for PPF. Seven days after culture of human CD34-postive cells with 10 ng/ml rhTPO, mature megakaryocytes were enriched by discontinuous bovine serum albumin gradients (purity>90%). The enriched mature megakaryocytes were treated with various concentrations of bortezomib for a further 4 days and the percentage of megakaryocytes bearing PPF was calculated under a microscope. Bortezomib dose-dependently inhibited PPF from mature megakaryocytes. Other proteasome inhibitors such as lactacystin and MG132 also demonstrated inhibitory effects on PPF without inhibiting colony formation of megakaryocytes. Since the inhibition of transcriptional factor NF-kB activity is one of the major pathways of proteasome inhibitors, we evaluated the effects of NF-kB inhibitors such as (−)-DHMEQ and Bay11-7082. Both of these inhibitors also demonstrated inhibitory effects on PPF but did not inhibit the colony formation of megakaryocytes. To exclude the direct effects of bortezomib on human platelets, we analyzed the effects of bortezomib for the activation of caspase-3 and mitochondrial potential in human platelets. We found that bortezomib did not directly induce apoptosis in human platelets. Our results demonstrate that bortezomib induces thrombocytopenia by inhibiting PPF but does not affect proliferation of megakaryocytes, endomitosis and platelet apoptosis. We believe this is the first report using human primary megakaryocytes to clarify the pathogenesis of thrombocytopenia caused by bortezomib therapy.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Hang Ma ◽  
Huifang Li ◽  
Chang Liu ◽  
Navindra P. Seeram

Abstract Objective Cannabidiol (CBD) has been reported to have anti-diabetic effects in pre-clinical and clinical studies but its inhibitory effects on α-glucosidase, a carbohydrate hydrolyzing enzyme, remain unknown. Herein, we evaluated CBD’s inhibitory effects on α-glucosidase using in vitro assays and computational studies. Methods CBD’s inhibitory effect on α-glucosidase activity was evaluated in a yeast enzymatic assay and by molecular docking. The stability of CBD in simulated gastric and intestinal fluids was evaluated by high-performance liquid chromatography analyses. Results CBD, at 10, 19, 38, 76, 152, 304, 608, and 1216 μM, inhibited α-glucosidase activity with inhibition of 17.1, 20.4, 48.1, 56.6, 59.1, 63.7, 74.1, and 95.4%, respectively. Acarbose, the positive control, showed a comparable inhibitory activity (with 85.1% inhibition at 608 μM). CBD’s inhibitory effect on α-glucosidase was supported by molecular docking showing binding energy (-6.39 kcal/mol) and interactions between CBD and the α-glucosidase protein. CBD was stable in simulated gastric and intestinal fluids for two hours (maintained ≥ 90.0%). Conclusions CBD showed moderate inhibitory effect against yeast α-glucosidase activity and was stable in gastric and intestinal fluids. However, further studies on CBD’s anti-α-glucosidase effects using cellular and in vivo models are warranted to support its potential application for the management of type II diabetes mellitus.


2019 ◽  
Vol 15 (1) ◽  
pp. 22-27
Author(s):  
Abir Bekhaoua ◽  
Ihcen Khacheba ◽  
Hadjer Boussoussa ◽  
Mohamed Yousfi

Background: The genus Linaria belongs to the Scrophulariaceae family. It is a large genus comprising about 200 species. Various parts of several Linaria species have been reported to exhibit various biological effects. In Algeria especially in the Sahara and steppe regions, the different species of Linaria have several uses in dietary application. Objective: The aims of this study are to evaluate the α-Glucosidase and α-Amylase inhibitory effects and the antioxidant activity using in vitro assays by an organic extract of the aerial part of Linaria aegyptiaca collected in two months, April and June, from southern Algeria. Methods: The extracts were obtained with successful maceration in (hexane, dichloromethane, acetone and methanol). The phenolics and flavonoids contents of L. aegyptiaca extracts were evaluated with Folin- Ciocalteu and aluminum chloride reagents, respectively. Then, we studied their inhibitory effects on α-Glucosidase and α-Amylase enzymes. The antioxidant potential was determined in vitro with DPPH, ABT and Phosphomolybdate tests. Results: The highest phenolic and flavonoid content were detected in the methanolic extracts of Linaria aegyptiaca collected in April. All the extracts showed good inhibitory activity on both enzymes, where the best activity was against α- amylase by acetonic extract collected in June with an IC50 = 95.03 μg/ml. The evaluation of antioxidant activity showed that all the extracts exhibited a good antioxidant capacity compared to standard antioxidants. Conclusion: The aim of this research is to establish the anti-diabetic properties and the probable alpha glucosidase and alpha amylase inhibitory activities of Algerian Linaria aegyptiaca species. These results show that this species has good antioxidant properties and a good potential for hyperglycemia management, too. The Algerian Linaria aegyptiaca can be considered as a natural source of anti-hyperglycemic treatment and might be interesting for the prospect of new molecules with antidiabetic effect.


Agronomy ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 595 ◽  
Author(s):  
Negar Ghezel Sefloo ◽  
Krzysztof Wieczorek ◽  
Siegrid Steinkellner ◽  
Karin Hage-Ahmed

The endophytic fungi Serendipita indica and S. vermifera have recently gained increasing attention due to their beneficial effects on plant growth and plant health. Little is known about other species, such as S. williamsii and S. herbamans. To test their biocontrol and growth-promoting potential, susceptible and tolerant tomato cultivars (Kremser Perle and Micro-Tom, respectively) were inoculated with S. williamsii, S. herbamans, S. indica, or S. vermifera and challenged with the soilborne pathogen Fusarium oxysporum f. sp. lycopersici (Fol) in greenhouse experiments. Furthermore, in vitro assays on the direct inhibitory effects of Serendipita spp. against Fol were performed. Negative effects of Fol on phenological growth in the susceptible cultivar were alleviated by all four applied Serendipita spp. Apart from these similar effects on biometric parameters, disease incidence was only reduced by S. herbamans and S. vermifera. In the tolerant cultivar, disease parameters remained unaffected although shoot dry mass was negatively affected by S. vermifera. Direct effects of Serendipita spp. against Fol were not evident in the in vitro assays indicating an indirect effect via the host plant. Our results highlight the importance of identifying cultivar-specific effects in pathogen–endophyte–plant interactions to determine the most beneficial combinations.


Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1037
Author(s):  
Sergio Rosselli ◽  
Rosa Tundis ◽  
Maurizio Bruno ◽  
Mariarosaria Leporini ◽  
Tiziana Falco ◽  
...  

This study aimed to evaluate the chemical composition by gas chromatography-mass spectrometry (GC-MS) and Nuclear Magnetic Resonance (NMR) analyses, the antioxidant activities evaluated by different in vitro assays namely 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), Ferric Reducing Ability Power (FRAP), and β-carotene bleaching tests, and the inhibitory effects of enzymes linked to obesity (lipase, α-amylase, and α-glucosidase) of fixed seed oil of Ceiba speciosa (A. St.-Hil.). Fourteen compounds were identified. Linoleic acid (28.22%) was the most abundant followed by palmitic acid (19.56%). Malvalic acid (16.15%), sterculic acid (11.11%), and dihydrosterculic acid (2.74%) were also detected. C. speciosa fixed oil exerted a promising ABTS radicals scavenging activity with an IC50 value of 10.21 µg/mL, whereas an IC50 of 77.44 µg/mL against DPPH+ radicals was found. C. speciosa fixed oil inhibited lipase with an IC50 value of 127.57 µg/mL. The present investigation confirmed the functional properties of C. speciosa fixed oil, and proposes its use as valuable source of bioactive constituents.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Chao Fan ◽  
Hui-zi Jin ◽  
Lehao Wu ◽  
Yu Zhang ◽  
Richard D. Ye ◽  
...  

In a continuing effort to discover more anti-inflammatory medicinal plants in China, the anti-inflammatory activities of 101 extracts from different parts of 84 traditional medicinal plants were evaluated by a panel of in vitro and in vivo assays. Nuclear factor-kappa B (NF-κB) inhibitory effects were determined by luciferase assay in stably transfected Hela cells. Cytotoxic activities were assessed using the MTT assay. Inhibitory effects on LPS-induced nitric oxide production and proinflammatory mediators were assessed by Griess reaction and Real-Time PCR analysis, respectively. In vivo anti-inflammatory activities were examined by xylene-induced mice ear edema model. In total, 22 extracts showed promising NF-κB inhibitory effects whereas 9 of them did not affect the cell viability. The 9 hit extracts were active in at least one of the subsequently performed in vitro pharmacological test systems. The extract from Hemerocallis minor (root) was selected to perform the in vivo study because it demonstrated significant suppressive effects in all the in vitro assays. Results showed that the extract of Hemerocallis minor (Root) was able to alleviate ear edema effectively in xylene-induced mice ear edema mode. Collectively, our study provides evidence for the potential anti-inflammatory effects of the medicinal plants traditionally used in China. Further phytochemical and pharmacological studies remain to be clarified.


1994 ◽  
Vol 120 (S1) ◽  
pp. S3-S10 ◽  
Author(s):  
M. E. Marshall ◽  
K. Kervin ◽  
C. Benefield ◽  
A. Umerani ◽  
S. Albainy-Jenei ◽  
...  

Marine Drugs ◽  
2018 ◽  
Vol 16 (9) ◽  
pp. 311 ◽  
Author(s):  
Pengbin Guo ◽  
Gang Li ◽  
Yuxiu Liu ◽  
Aidang Lu ◽  
Ziwen Wang ◽  
...  

Naamines, naamidines and various derivatives of these marine natural products were synthesized and characterized by means of nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry. The activities of these alkaloids against a plant virus and phytopathogenic fungi were evaluated for the first time. A benzyloxy naamine derivative 15d displayed excellent in vivo activity against tobacco mosaic virus at 500 μg/mL (inactivation activity, 46%; curative activity, 49%; and protective activity, 41%); its activities were higher than the corresponding activities of the commercial plant virucide ribavirin (32%, 35%, and 34%, respectively), making it a promising new lead compound for antiviral research. In vitro assays revealed that the test compounds exhibited very good antifungal activity against 14 kinds of phytopathogenic fungi. Again, the benzyloxy naamine derivative 15d exhibited broad-spectrum fungicidal activity, emerging as a new lead compound for fungicidal research. Additional in vivo assays indicated that many of the compounds displayed inhibitory effects >30%.


2021 ◽  
Vol 18 (1) ◽  
pp. 25
Author(s):  
Simone Muniz Pacheco ◽  
Rejane Giacomelli Tavares ◽  
Mauricio Seifert ◽  
Leonardo Nora ◽  
Rafael de Almeida Schiavon

There is a great diversity of plants which are grown in the Atlantic Forest region of Brazil that produce small, colorful, edible fruit that are used in empiric mode to treat several diseases, such as diabetes, as fruits are a rich source of dietary phenolic antioxidants. In this study, we investigated the inhibitory activity of methanolic fruit extracts from the Myrtaceae family - Psidium cattleianum (araçá), Syzygium cumini (jambolão), Campomanesia xanthocarpa (guabiroba), Eugenia uniflora (pitanga) and Eugenia pyriformis (uvaia) - against α-amylase and intestinal α-glucosidase (maltose and sucrose). The antioxidant activities were evaluated using two different in vitro assays: the 2,2’-azinobis(3-ethylbenzthiazoline-6-sulphonate) (ABTS) test and the 2,2’-diphenyl-1-picrylhydrazyl (DPPH) test. The extracts of P. cattleianum, S. cumini, E. pyriformis inhibited α-amylase activity between 13% and 60% (p<0.05). The extracts of P. cattleianum also inhibited α-glucosidase activity with either maltose or sucrose as substrate between 15% and 61% (p<0.05). Additionally, these fruits are rich in phenolic compounds with antioxidant activities.


Sign in / Sign up

Export Citation Format

Share Document