scholarly journals Zinc(II) Complexes with Amino Acids for Potential Use in Dermatology: Synthesis, Crystal Structures, and Antibacterial Activity

Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 951 ◽  
Author(s):  
Michał Abendrot ◽  
Lilianna Chęcińska ◽  
Joachim Kusz ◽  
Katarzyna Lisowska ◽  
Katarzyna Zawadzka ◽  
...  

The multifunctional profile of Zn2+ has influenced its great popularity in various pharmaceutical, food, and cosmetic products. Despite the use of different inorganic and organic zinc derivatives, the search for new zinc-containing compounds with a safer skin profile still remains an open issue. The present paper describes the synthesis, structural characterization, and antibacterial activity of zinc(II) complexes with proteinogenic amino acids as potential candidates for dermatological treatments. The obtained complexes are of the general formula [Zn(AA)2], where AA represents an amino acid (L-Glu, Gly, L-His, L-Pro, L-Met, and L-Trp). Their synthesis was designed in such a way that the final bis(aminoacidate) zinc(II) complexes did not contain any counter-ions such as Cl−, NO3−, or SO42− that can cause some skin irritations. The chemical structure and composition of the compounds were identified by 1H NMR spectroscopy and elemental analysis, and four were also characterized by single-crystal X-ray diffraction. The Hirshfeld surface analysis for the Zn2+ metallic center helped to determine its coordination number and geometry for each complex. Finally, the antibacterial properties of the complexes were determined with respect to three Gram-positive strains, viz. Staphylococcus aureus ATCC 6538, Staphylococcus epidermidis ATCC 12228, and Streptococcus pyogenes ATCC 19615, and two Gram-negative bacteria, viz. Escherichia coli ATCC 25992 and Pseudomonas aeruginosa ATCC 27853, and were compared with the activity of zinc 2-pirrolidone 5-carboxylate (ZnPCA), commonly applied in dermatology. It was found that the Zn(II) complexes with methionine and glycine exhibited a higher antibacterial activity than the tested standard, and the antimicrobial properties of complex with Trp were satisfactory. The results of the antimicrobial activity examination allow us to postulate that the obtained zinc complexes might become new active substances for use in dermatological products.

2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
I. DeAlba-Montero ◽  
Jesús Guajardo-Pacheco ◽  
Elpidio Morales-Sánchez ◽  
Rene Araujo-Martínez ◽  
G. M. Loredo-Becerra ◽  
...  

This paper reports a comparison of the antibacterial properties of copper-amino acids chelates and copper nanoparticles againstEscherichia coli,Staphylococcus aureus, andEnterococcus faecalis. These copper-amino acids chelates were synthesized by using a soybean aqueous extract and copper nanoparticles were produced using as a starting material the copper-amino acids chelates species. The antibacterial activity of the samples was evaluated by using the standard microdilution method (CLSI M100-S25 January 2015). In the antibacterial activity assays copper ions and copper-EDTA chelates were included as references, so that copper-amino acids chelates can be particularly suitable for acting as an antibacterial agent, so they are excellent candidates for specific applications. Additionally, to confirm the antimicrobial mechanism on bacterial cells, MTT assay (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) was carried out. A significant enhanced antimicrobial activity and a specific strain were found for copper chelates overE. faecalis. Its results would eventually lead to better utilization of copper-amino acids chelate for specific application where copper nanoparticles can be not used.


2021 ◽  
Vol 8 ◽  
Author(s):  
Qi Liu ◽  
Wen-Chong Ouyang ◽  
Xiu-Hong Zhou ◽  
Tao Jin ◽  
Zheng-Wei Wu

In this study, nanofibers with different ratios of poly(vinyl alcohol) and chitosan incorporated with moxifloxacin hydrochloride (MH/PVA/CS) were fabricated through the blending electrospinning, and the morphological features were tested using scanning electron microscopy (SEM). Further characterization of the new nanofiber was accomplished by Thermogravimetric analysis (TG), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR). Antibacterial activity of the MH-loaded nanofibers at different drug loading were tested and compared with the blank group. Experimental results show that the MH/PVA/CS nanofibers exhibited the good antibacterial properties against Staphylococcus aureus and Pseudomonas aeruginosa due to the MH incorporation. Compared with blank nanofibers, MH/PVA/CS nanofibers have significantly better antibacterial properties, and different proportions of PVA and CS have a certain effect on the antibacterial activity of nanofibers. The conclusions in this paper show that MH/PVA/CS composite nanofibers may have great potential in antibacterial materials.


Nanomaterials ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 450 ◽  
Author(s):  
Armin Rajabi ◽  
Mariyam Ghazali ◽  
Ebrahim Mahmoudi ◽  
Amir Baghdadi ◽  
Abdul Mohammad ◽  
...  

In this study, Ag2O was synthesized on polyethylene terephthalate fabrics by using an ultrasonic technique with Ag ion reduction in an aqueous solution. The effects of pH on the microstructure and antibacterial properties of the fabrics were evaluated. X-ray diffraction confirmed the presence of Ag2O on the fabrics. The fabrics were characterized by Fourier transform infrared spectroscopy, ultraviolet–visible spectroscopy, and wettability testing. Field-emission scanning electron microscopy verified that the change of pH altered the microstructure of the materials. Moreover, the antibacterial activity of the fabrics against Escherichia coli was related to the morphology of Ag2O particles. Thus, the surface structure of Ag2O particles may be a key factor of the antibacterial activity.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4479
Author(s):  
Pei-Jun Li ◽  
Jiang-Juan Pan ◽  
Li-Jun Tao ◽  
Xia Li ◽  
Dong-Lin Su ◽  
...  

The present study focuses on the biological synthesis, characterization, and antibacterial activities of silver nanoparticles (AgNPs) using extracellular extracts of Aspergillus japonicus PJ01.The optimal conditions of the synthesis process were: 10 mL of extracellular extracts, 1 mL of AgNO3 (0.8 mol/L), 4 mL of NaOH solution (1.5 mol/L), 30 °C, and a reaction time of 1 min. The characterizations of AgNPs were tested by UV-visible spectrophotometry, zeta potential, scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and thermogravimetric (TG) analyses. Fourier transform infrared spectroscopy (FTIR) analysis showed that Ag+ was reduced by the extracellular extracts, which consisted chiefly of soluble proteins and reducing sugars. In this work, AgNO3 concentration played an important role in the physicochemical properties and antibacterial properties of AgNPs. Under the AgNO3 concentration of 0.2 and 0.8 mol/L, the diameters of AgNPs were 3.8 ± 1.1 and 9.1 ± 2.9 nm, respectively. In addition, smaller-sized AgNPs showed higher antimicrobial properties, and the minimum inhibitory concentration (MIC) values against both E. coli and S. aureus were 0.32 mg/mL.


2018 ◽  
Vol 34 (4) ◽  
pp. 2026-2030 ◽  
Author(s):  
Sarrah Sattar Jabbar

In search of novel antibacterial agent, a series of new isatin derivatives (3a-d) have been synthesized by condensation isatin (2,3-indolinendione) with piperidine (hexahydropyridine), hydrazine hydrate and Boc-amino acids respectively. Compounds synthesized have been characterized by IR spectroscopy and elemental analysis. In addition, the in vitro antibacterial properties have been tested against E. coli, P. aeruginosa, and Bacillus cereus, S. aureus by employing the well diffusion technique. A majority of the synthesized compounds were showing good antibacterial activity and from comparisons of the compounds, compound 3d has been determined to be the most active compound.


2011 ◽  
Vol 39 (2) ◽  
pp. 124 ◽  
Author(s):  
ANDREEA STĂNILĂ ◽  
Cornelia BRAICU ◽  
Sorin STĂNILĂ ◽  
Raluca M. POP

The antibacterial properties of differently copper and cobalt amino acids complexes on agar plates was investigated in the present study. The antibacterial activity of amino acid complexes was evaluated against on three bacteria strains (Escherichia coli, Bacillus cereus, Micrococcus luteus). Generally, the amino acids complexes were mainly active against gram-positive organisms, species like Micrococcus luteus being the most susceptible strain tested. It was registered a moderate antibacterial activity against Bacillus cereus. The microorganisms Escherichia coli, which are already known to be multi-resistant to drugs, were also resistant to the amino acids complexes but also to the free salts tested. Escherichia coli were susceptible only to the CoCl2 and copper complex with phenylalanine. The complexes with leucine and histidine seem to be more active than the parent free ligand against one or more bacterial species. Moderate activity was registered in the case of complexes with methionine and phenylalanine. From the complexes tested less efficient antibacterial activity was noted in the case of complexes with lysine and valine. These results show that cobalt and copper complexes have an antibacterial activity and suggest their potential application as antibacterial agents.


Author(s):  
Festus O. Taiwo ◽  
Craig A. Obafemi ◽  
David A. Akinpelu A. Akinpelu

Aims: This studies aims at the synthesis of new heterocyclic systems and study its biological and pharmacological properties. Objective: This study was designed to synthesized some quinoxaline-2,3-dione with sulfonamide moiety, characterize the synthesized compounds, and study the antimicrobial properties of the synthesized compounds on some bacterial strains. Materials and Methods: Six quinoxaline-6-sulfonohydrazone derivatives were synthesized by reacting quinoxaline-6-sulfonohydrazine with some substituted benzaldehydes and ketones. The compounds were tested for their potential antibacterial properties. Results: All the test compounds possessed promising antibacterial property against a panel of bacterial strains used for this study. The MIC values exhibited by these compounds ranged between 0.0313 and 0.250 mg/mL. Among the compounds tested, compound 2 showed appreciable antibacterial activity. Discussion and Conclusion: The study concluded that all the compounds exhibited appreciable bactericidal effects towards all the bacterial strains, particularly, compound 2 This is an indication that such compounds possessing broad spectrum activities will be useful in formulating antimicrobial compounds which could be used to treat infections caused by pathogens that are now developing resistance against the available antibiotics.


2019 ◽  
pp. 96-104
Author(s):  
N. Hrynchuk ◽  
N. Vrynchanu

The emergence and spread of antibiotic-resistant strains of microorganisms reduces the effectiveness of antibiotic therapy and requires finding solutions to problems, one of which is the study of antimicrobial properties in drugs of various pharmacological groups. The purpose of the work was to summarize the data on the antibacterial activity of thioridazine and its derivatives to determine the feasibility and prospects of creating new antibacterial drugs on their basis. The paper presents literature data on the effects of thioridazine on the causative agent of tuberculosis, antistaphylococcal activity, susceptibility of plasmodium and trypanosoma. The antibacterial activity of the drug was established within in vitro studies with the determination of MIC towards gram-positive and gram-negative microorganisms, ex vivo using macrophage lines, as well as within in vivo experiments on mice. It is established that the neuroleptic thioridazine is characterized by pronounced anti-tuberculosis activity, the mechanism of action is associated with the impact on the cell membrane of M. tuberculosis, inactivation by calmodulin and inhibition of specific NADH-dehydrogenase type II. The literature data indicate that thioridazine is able to increase the activity of isoniazid against the strains of mycobacteria that are susceptible and resistant to its action. It has been established that resistance to thioridazine in antibiotic-resistant M. tuberculosis strains is not formed. The drug is characterized by its ability to inhibit the growth and reproduction of both methicylin-sensitive (MSSA) and methicilin-resistant (MRSA) strains of Staphylococcus aureus, which has been proven within in vitro experiments. The effectiveness of thioridazine has been proven within in vivo experiments in case of skin infection and sepsis caused by S. aureus. Antimicrobial effect of the drug is also observed towards to plasmodium (P. falciparum) and trypanosomes (Trypanosoma spp.). Currently, the synthesis of thioridazine derivatives is carried out to identify compounds with a pronounced antibacterial effect. Some of the first synthesized compounds are not inferior or superior to thioridazine by the inhibitory effect. Thus, these data suggest that drugs of different pharmacological groups, including drugs that affect the nervous system - thioridazine and its derivatives, can be a source of replenishment of the arsenal of antimicrobial drugs to control such threatening infections as tuberculosis and diseases caused by polyresistant strains of microorganisms.


2020 ◽  
Vol 16 ◽  
Author(s):  
Arfaa Sajid ◽  
Qaisar Manzoor ◽  
Anam Sajid ◽  
Muhammad Imran ◽  
Shanza Khalid ◽  
...  

Background:: Currently, developing methods for the formation of nanoparticles with antimicrobial properties based on green chemistry are the research hotspots. In this research green biosynthesis of Eriobotrya japonica extract loaded silver nanoparticles and their characterization were the main objectives to achieve. Methods:: Green synthesis of E. japonica leaves extract-loaded silver nanoparticles (AgNPs) was carried out and its effect on bacterial growth was examined. The reduction of silver ions in solution was observed using UV-Vis spectrophotometer. The properties of AgNPs were assessed using Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). Also, their antibacterial effects were checked against Staphylococcus aureus and Escherichia coli. Results:: It was revealed that 5-50 nm sized spherical to elongated nanoparticles were synthesized that possessed comparatively better antibacterial potential against E. coli and S. aureus than conventional extract of the E. japonica leaves. Conclusions:: Green synthesis and effective utilization of Eriobotrya japonica extract loaded silver nanoparticles is a promising approach for nanoparticle production avoiding negative environmental impacts.


2020 ◽  
Vol 11 ◽  
pp. 1119-1125
Author(s):  
Mohammad Jaber ◽  
Asim Mushtaq ◽  
Kebiao Zhang ◽  
Jindan Wu ◽  
Dandan Luo ◽  
...  

The control over contagious diseases caused by pathogenic organisms has become a serious health issue. The extensive usage of antibiotics has led to the development of multidrug-resistant bacterial strains. In this regard, metal-oxide-based antibacterial nanomaterials have received potential research interest due to the efficient prevention of microorganism growth. In this study, splat-shaped Ag–TiO2 nanocomposites (NCs) were synthesized on the gram scale and the enhanced antibacterial properties of TiO2 in the presence of silver were examined. The formation of Ag–TiO2 NCs was analyzed through various characterization techniques. The cell viability experimental results demonstrated that the Ag–TiO2 NCs have good biocompatibility. The antibacterial activity of the prepared Ag–TiO2 NCs was tested against the Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) bacterial strains. The Ag–TiO2 NCs exhibited promising and superior antibacterial properties compared to TiO2 nanospheres as confirmed by the bacterial growth and inhibition zone. The improvement in the antibacterial activity was attributed to the synergistic effect of the hybrid nature of TiO2 nanoparticles in the presence of Ag.


Sign in / Sign up

Export Citation Format

Share Document