scholarly journals Molecular Structure Modulated Trap Distribution and Carrier Migration in Fluorinated Epoxy Resin

Molecules ◽  
2020 ◽  
Vol 25 (13) ◽  
pp. 3071 ◽  
Author(s):  
Jin Li ◽  
Yufan Wang ◽  
Zhaoyu Ran ◽  
Hang Yao ◽  
Boxue Du ◽  
...  

Surface charge accumulation on epoxy insulators is one of the most serious problems threatening the operation safety of the direct current gas-insulated transmission line (GIL), and can be efficiently inhibited by the surface modification technology. This paper investigated the mechanisms of fluorination modulated surface charge behaviors of epoxy resin through quantum chemical calculation (QCC) analysis of the molecular structure. The results show that after fluorination, the surface charge dissipation process of the epoxy sample is accelerated by the introduced shallow trap sites, which is further clarified by the carrier mobility model. The electron distribution probability of the highest occupied molecular orbitals (HOMO) under positive charging and the lowest unoccupied molecular orbitals (LUMO) under negative charging shows distinctive patterns. It is illustrated that electrons are likely to aggregate locally around benzenes for the positively charged molecular structure, while electrons tend to distribute all along the epoxy chain under negatively charging. The calculated results verify that fluorination can modulate surface charge behaviors of epoxy resin through redesigning its molecular structure, trap distribution and charging patterns.

Anomalies in the morphology of the carbon cage of C 60 clusters have been investigated with atomic level resolution using high-resolution scanning tunnelling microscopy. The imperfect carbon cages have been resolved in the finest detail, which, for the first time, provide a remarkable confirmation of a variety of theoretical defect structures recently predicted by molecular dynamics simulations. The observed tunnelling spectra are consistent with the theoretical contention that the gap between the highest occupied molecular orbitals (HOMO) and the lowest unoccupied molecular orbitals (LUMO) for the clusters is decreased with the presence of defects.


2018 ◽  
Vol 22 (01n03) ◽  
pp. 221-232
Author(s):  
Xiangfei Kong ◽  
Hongkang Gong ◽  
Shengping Dai ◽  
Wei Yao ◽  
Linping Mu ◽  
...  

Five novel dyads, consisting of a tetraphenylporphyrine unit connected to a perylene monoimide diester unit via a flexible bridge -CONH-(CH[Formula: see text]- (n [Formula: see text] 4, 6, 8, 10 and 12), have been synthesized. Their structures were characterized by [Formula: see text]C and [Formula: see text]H nuclear magnetic resonance spectroscopy, infrared spectroscopy, mass spectrometry and elemental analysis. The UV-vis absorption spectra revealed these dyads have broad optical absorption in the ultraviolet and visible regions due to the complementary absorption of the two units. The differential scanning calorimetry traces and polarized optical microscopy textures showed all these dyads have columnar liquid crystal phases. Cyclic voltammetry revealed the highest occupied molecular orbitals of the dyads located on the porphyrin units, and the lowest unoccupied molecular orbitals located on the perylene units. In addition, these results were in agreement with that of the theoretical modeling. When excited at 423 or 473 nm, the photoluminescent emission spectra showed that the degree of fluorescence quenching of porphyrin units increased as the spacers became shorter. This quenching was ascribed to intramolecular photoinduced electron transfer, which also induced the dyad molecules to form the charge-separated states. The charge-separated molecules were further confirmed by the photocurrent response curves. These behaviors of broad absorption of the ultraviolet-visible light, yielding the charge-separated states of the molecules when excited and the formation of columnar liquid crystal phase made these dyads candidates for single-component photovoltaic active materials.


2020 ◽  
Vol 20 (3) ◽  
pp. 638
Author(s):  
Haithem Abdulhasan ◽  
Ahmed Al-Yasari ◽  
Rahman Alasadi

In this study, the structural geometry and vibrational frequencies (IR) of 1,3-Diaza-adamantane-6-ones derivatives including Adamantane (A), 1,3-Diaza-adamantan (D), 1,3-Diaza-adamantan-6-one (DO), 5-Benzyl-1,3-diaza-adamantan-6-one (BD), 5-(4-Hydroxybenzyl)-1,3-diaza-adamantan-6-one (HBD), 5-(4-Methoxybenzyl)-1,3-diaza-adamantan-6-one (MBD), and 5-(4-Hydroxy-3-methoxybenzyl)-1,3-diaza-adamantan-6-one (HMBD) were theoretically studied. In addition, molecular orbital energies, including the highest occupied molecular orbitals (HOMOs), and lowest unoccupied molecular orbitals (LUMOs), and electronic properties of the titled molecules were theoretically studied using the computational method. Optimized molecular structures were obtained by DFT method with the hybrid B3LYP functional at a relatively small basis set of 6-31G. The calculated vibrational wavenumbers were obtained using the same level of the theory mentioned above. The contributions to the molecular orbitals of adamantane and substituted-phenyl groups in the title compounds were determined. Moving from A to HMBD, a decrease in the value of LUMO and total energy are noticed, while an increase in the value of HOMO is noted. These findings are supported by the decreasing in the EHOMO-LUMO gap values. Furthermore, a decrease in the value of ionization potential (IP) is obtained, while an increase in the electronegativity (EA) is observed.


2005 ◽  
Vol 40 (4) ◽  
pp. 484-490 ◽  
Author(s):  
Keun J. Choi ◽  
Sang G. Kim ◽  
Chang W. Kim ◽  
Seung H. Kim

Abstract This study examined the effect of polyphosphate on removal of endocrine-disrupting chemicals (EDCs) such as nonylphenol and bisphenol-A by activated carbons. It was found that polyphosphate aided in the removal of nonylphenol and bisphenol- A. Polyphosphate reacted with nonylphenol, likely through dipole-dipole interaction, which then improved the nonylphenol removal. Calcium interfered with this reaction by causing competition. It was found that polyphosphate could accumulate on carbon while treating a river. The accumulated polyphosphate then aided nonylphenol removal. The extent of accumulation was dependent on the type of carbon. The accumulation occurred more extensively with the wood-based used carbon than with the coal-based used carbon due to the surface charge of the carbon. The negatively charged wood-based carbon attracted the positively charged calcium-polyphosphate complex more strongly than the uncharged coal-based carbon. The polyphosphate-coated activated carbon was also effective in nonylphenol removal. The effect was different depending on the type of carbon. Polyphosphate readily attached onto the wood-based carbon due to its high affinity for polyphosphate. The attached polyphosphate then improved the nonylphenol removal. However, the coating failed to attach polyphosphate onto the coal-based carbon. The nonylphenol removal performance of the coal-based carbon remained unchanged after the polyphosphate coating.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
David Da Costa ◽  
Chloé Exbrayat-Héritier ◽  
Basile Rambaud ◽  
Simon Megy ◽  
Raphaël Terreux ◽  
...  

Abstract Background After the golden age of antibiotic discovery, bacterial infections still represent a major challenge for public health worldwide. The biofilm mode of growth is mostly responsible for chronic infections that current therapeutics fail to cure and it is well-established that novel strategies must be investigated. Particulate drug delivery systems are considered as a promising strategy to face issues related to antibiotic treatments in a biofilm context. Particularly, poly-lactic acid (PLA) nanoparticles present a great interest due to their ability to migrate into biofilms thanks to their submicronic size. However, questions still remain unresolved about their mode of action in biofilms depending on their surface properties. In the current study, we have investigated the impact of their surface charge, firstly on their behavior within a bacterial biofilm, and secondly on the antibiotic delivery and the treatment efficacy. Results Rifampicin-loaded PLA nanoparticles were synthetized by nanoprecipitation and characterized. A high and superficial loading of rifampicin, confirmed by an in silico simulation, enabled to deliver effective antibiotic doses with a two-phase release, appropriate for biofilm-associated treatments. These nanoparticles were functionalized with poly-l-lysine, a cationic peptide, by surface coating inducing charge reversal without altering the other physicochemical properties of these particles. Positively charged nanoparticles were able to interact stronger than negative ones with Staphylococcus aureus, under planktonic and biofilm modes of growth, leading to a slowed particle migration in the biofilm thickness and to an improved retention of these cationic particles in biofilms. While rifampicin was totally ineffective in biofilms after washing, the increased retention capacity of poly-l-lysine-coated rifampicin-loaded PLA nanoparticles has been associated with a better antibiotic efficacy than uncoated negatively charged ones. Conclusions Correlating the carrier retention capacity in biofilms with the treatment efficacy, positively charged rifampicin-loaded PLA nanoparticles are therefore proposed as an adapted and promising approach to improve antibiotic delivery in S. aureus biofilms.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1298
Author(s):  
Farooq Aslam ◽  
Zhen Li ◽  
Guanghao Qu ◽  
Yang Feng ◽  
Shijun Li ◽  
...  

To date, breakdown voltage is an underlying risk to the epoxy-based electrical high voltage (HV) equipment. To improve the breakdown strength of epoxy resin and to explore the formation of charge traps, in this study, two types of polyhedral oligomeric silsesquioxane (POSS) fillers are doped into epoxy resin. The breakdown voltage test is performed to investigate the breakdown strength of neat epoxy and epoxy/POSS composites. Electron traps that play an important role in breakdown strength are characterized by thermally stimulated depolarized current (TSDC) measurement. A quantum chemical calculation tool identifies the source of traps. It is found that adding octa-glycidyl POSS (OG-POSS) to epoxy enhances the breakdown strength than that of neat epoxy and epoxycyclohexyl POSS (ECH-POSS) incorporated epoxy. Moreover, side groups of OG-POSS possess higher electron affinity (EA) and large electronegativity that introduces deep-level traps into epoxy resin and restrain the electron transport. In this work, the origin of traps has been investigated by the simulation method. It is revealed that the functional properties of POSS side group can tailor an extensive network of deep traps in the interfacial region with epoxy and enhance the breakdown strength of the epoxy/POSS nanocomposite.


mBio ◽  
2018 ◽  
Vol 9 (6) ◽  
Author(s):  
Christoph M. Ernst ◽  
Christoph J. Slavetinsky ◽  
Sebastian Kuhn ◽  
Janna N. Hauser ◽  
Mulugeta Nega ◽  
...  

ABSTRACTDaptomycin, a calcium-dependent lipopeptide antibiotic whose full mode of action is still not entirely understood, has become a standard-of-care agent for treating methicillin-resistantStaphylococcus aureus(MRSA) infections. Daptomycin-resistant (DAP-R)S. aureusmutants emerge during therapy, featuring isolates which in most cases possess point mutations in themprFgene. MprF is a bifunctional bacterial resistance protein that synthesizes the positively charged lipid lysyl-phosphatidylglycerol (LysPG) and translocates it subsequently from the inner membrane leaflet to the outer membrane leaflet. This process leads to increased positiveS. aureussurface charge and reduces susceptibility to cationic antimicrobial peptides and cationic antibiotics. We characterized the most commonly reported MprF mutations in DAP-RS. aureusstrains in a defined genetic background and found that only certain mutations, including the frequently reported T345A single nucleotide polymorphism (SNP), can reproducibly cause daptomycin resistance. Surprisingly, T345A did not alter LysPG synthesis, LysPG translocation, or theS. aureuscell surface charge. MprF-mediated DAP-R relied on a functional flippase domain and was restricted to daptomycin and a related cyclic lipopeptide antibiotic, friulimicin B, suggesting that the mutations modulate specific interactions with these two antibiotics. Notably, the T345A mutation led to weakened intramolecular domain interactions of MprF, suggesting that daptomycin and friulimicin resistance-conferring mutations may alter the substrate range of the MprF flippase to directly translocate these lipopeptide antibiotics or other membrane components with crucial roles in the activity of these antimicrobials. Our study points to a new mechanism used byS. aureusto resist calcium-dependent lipopeptide antibiotics and increases our understanding of the bacterial phospholipid flippase MprF.IMPORTANCEEver since daptomycin was introduced to the clinic, daptomycin-resistant isolates have been reported. In most cases, the resistant isolates harbor point mutations in MprF, which produces and flips the positively charged phospholipid LysPG. This has led to the assumption that the resistance mechanism relies on the overproduction of LysPG, given that increased LysPG production may lead to increased electrostatic repulsion of positively charged antimicrobial compounds, including daptomycin. Here we show that the resistance mechanism is highly specific and relies on a different process that involves a functional MprF flippase, suggesting that the resistance-conferring mutations may enable the flippase to accommodate daptomycin or an unknown component that is crucial for its activity. Our report provides a new perspective on the mechanism of resistance to a major antibiotic.


2021 ◽  
Author(s):  
Mohamed Ibrahim Mohamed ◽  
Vladimir Alvarado

Abstract A large percentage of petroleum reserves are located in carbonate reservoirs, which can be divided into limestone, chalk and dolomite. Roughly the oil recovery from carbonates is below the 30% due to the strong oil wetness, low permeability, abundance of natural fractures, and inhomogeneous rock properties Austad (2013). Injection of adjusted brine chemistry into carbonate reservoirs has been reported to increase oil recovery by 5-30% of the original oil in place in field tests and core flooding experiments. Previous studies have shown that adjusted waterflooding recovery in carbonate reservoirs is dependent on the composition and ionic strength of the injection brine (Morrow et al. 1998; Zhang 2005). Many research works have focused on the role of the brine composition in altering the initial wettability state of carbonate rock, which is usually intermediate- to oil-wet. Crude oils contain carboxyl group, -COOH, that can be found in the resin and asphaltenes fractions. The negatively charged carboxyl group, -COOH bond very strongly with the positively charged, sites on the carbonate surface. The carbonate surface, which is positively charged is believed to adsorb the SO42− that is negatively charged. On the other side cations Ca2+ and Mg2+ bind to the negatively charged carboxylic group and release it from the surface. In this study we use a closed system geochemical model to study the effect of the surface-charge dominant species; Ca2+, Mg2+ and SO42− on the carbonate surfaces at 80 °C. The proposed geochemical interactions can possibly lead to a change in the surface charge, altering wettability of the rock by exchanging ions/cations. Brines with various concentrations of Mg2+ and SO42− were prepared in the lab and contact angle between carbonate substrate and crude oil was measured using a rising/captive bubble tensiometer at 80 °C. The composition of the carbonate system was collected from previous literature review and the composition of adjusted brines was used to build a surface sorption database to develop a geochemical model. This model is focused on identifying the reaction paths and the surface behavior that may represent the real system. Changes in carbonate surface wettability were further evaluated using a series of contact angle experiments. Experimental observations and modeling results are concordant and imply that SO42− ions may alter the wettability of carbonate surface at high temperature.


Sign in / Sign up

Export Citation Format

Share Document