scholarly journals Potential Toxicity of Iron Oxide Magnetic Nanoparticles: A Review

Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3159 ◽  
Author(s):  
Nemi Malhotra ◽  
Jiann-Shing Lee ◽  
Rhenz Alfred D. Liman ◽  
Johnsy Margotte S. Ruallo ◽  
Oliver B. Villaflores ◽  
...  

The noteworthy intensification in the development of nanotechnology has led to the development of various types of nanoparticles. The diverse applications of these nanoparticles make them desirable candidate for areas such as drug delivery, coasmetics, medicine, electronics, and contrast agents for magnetic resonance imaging (MRI) and so on. Iron oxide magnetic nanoparticles are a branch of nanoparticles which is specifically being considered as a contrast agent for MRI as well as targeted drug delivery vehicles, angiogenic therapy and chemotherapy as small size gives them advantage to travel intravascular or intracavity actively for drug delivery. Besides the mentioned advantages, the toxicity of the iron oxide magnetic nanoparticles is still less explored. For in vivo applications magnetic nanoparticles should be nontoxic and compatible with the body fluids. These particles tend to degrade in the body hence there is a need to understand the toxicity of the particles as whole and degraded products interacting within the body. Some nanoparticles have demonstrated toxic effects such inflammation, ulceration, and decreases in growth rate, decline in viability and triggering of neurobehavioral alterations in plants and cell lines as well as in animal models. The cause of nanoparticles’ toxicity is attributed to their specific characteristics of great surface to volume ratio, chemical composition, size, and dosage, retention in body, immunogenicity, organ specific toxicity, breakdown and elimination from the body. In the current review paper, we aim to sum up the current knowledge on the toxic effects of different magnetic nanoparticles on cell lines, marine organisms and rodents. We believe that the comprehensive data can provide significant study parameters and recent developments in the field. Thereafter, collecting profound knowledge on the background of the subject matter, will contribute to drive research in this field in a new sustainable direction.

2020 ◽  
Vol 71 (4) ◽  
pp. 145-154 ◽  
Author(s):  
Iulian Antoniac ◽  
Alexandru Cernea ◽  
Cristian Petcu ◽  
Dan Laptoiu ◽  
Diana Tabaras ◽  
...  

Drug delivery systems enable transportation of drugs in the body, controlling the time, rate or place of the release rendering them ideal for local treatments. When treating joint diseases such as osteoarthritis of the knee the therapeutically substances are given intra-particularly. Magnetic nanoparticles are used so that the solution containing the treatment can be easily directed from the outside with the help of magnets allowing the drug to reach the maximum concentration at the area of interest. Functionalization of nanoparticles is necessary to obtain viscoelastic solutions with optimal physico-chemical and medical properties. This paper presents a superior method of delivering intraarticular hyaluronic acid using iron oxide magnetic nanoparticles (Fe2O3) which were embedded in tetramethylammonium hydroxide (TMOH) and coated using a layer-by-layer technique with hyaluronic acid and inulin. TMOH was chosen for a better dispersion of nanoparticles in the viscoelastic solution, eliminating the risk of agglomerations, hyaluronic acid and inulin being used for medical purposes.


2019 ◽  
Vol 5 (3) ◽  
pp. 50 ◽  
Author(s):  
Marcos Luciano Bruschi ◽  
Lucas de Alcântara Sica de Toledo

Advances of nanotechnology led to the development of nanoparticulate systems with many advantages due to their unique physicochemical properties. The use of iron-oxide magnetic nanoparticles (IOMNPs) in pharmaceutical areas increased in the last few decades. This article reviews the conceptual information about iron oxides, magnetic nanoparticles, methods of IOMNP synthesis, properties useful for pharmaceutical applications, advantages and disadvantages, strategies for nanoparticle assemblies, and uses in the production of drug delivery, hyperthermia, theranostics, photodynamic therapy, and as an antimicrobial. The encapsulation, coating, or dispersion of IOMNPs with biocompatible material(s) can avoid the aggregation, biodegradation, and alterations from the original state and also enable entrapping the bioactive agent on the particle via adsorption or covalent attachment. IOMNPs show great potential for target drug delivery, improving the therapy as a consequence of a higher drug effect using lower concentrations, thus reducing side effects and toxicity. Different methodologies allow IOMNP synthesis, resulting in different structures, sizes, dispersions, and surface modifications. These advantages support their utilization in pharmaceutical applications, and getting suitable drug release control on the target tissues could be beneficial in several clinical situations, such as infections, inflammations, and cancer. However, more toxicological clinical investigations about IOMNPs are necessary.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hamed Nosrati ◽  
Marziyeh Salehiabar ◽  
Mohammadjavad Fridoni ◽  
Mohammad-Amin Abdollahifar ◽  
Hamidreza Kheiri Manjili ◽  
...  

Drug Research ◽  
2017 ◽  
Vol 68 (05) ◽  
pp. 280-285 ◽  
Author(s):  
Marziyeh Salehiabar ◽  
Hamed Nosrati ◽  
Soodabeh Davaran ◽  
Hossein Danafar ◽  
Hamidreza Manjili

AbstractNatural L-aspartic acid coated iron oxide magnetic nanoparticles (Asp@IONPs) were prepared by a one pot, in-situ and green co–precipitation method in an aqueous medium. Functionalized iron oxide magnetic nanoparticles (IONPs) were characterized by Vibrating Sample Magnetometer (VSM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) techniques. Cellular toxicity of IONPs was also investigated on HEK-293 cell lines. The results showed that the zeta potential of Asp@IONPs was about −21.1 mV and the average size was 17.80±3.09 nm. Cell toxicity results show that as prepared IONPs are biocompatible. Asp@IONPs show the possibility of using these nanoparticles in the development of in vitro and in vivo biomedical fields due to do not possess a toxic effect, good ζ-potential and related small and narrow size distribution.


Nanoscale ◽  
2015 ◽  
Vol 7 (2) ◽  
pp. 625-636 ◽  
Author(s):  
Lin Yang ◽  
Huijuan Kuang ◽  
Wanyi Zhang ◽  
Zoraida P. Aguilar ◽  
Yonghua Xiong ◽  
...  

In spite of the immense benefits from iron oxide magnetic nanoparticles (IOMNs), there is scanty information regarding their metabolic activities and toxicity in vivo.


2015 ◽  
Vol 24 (10) ◽  
pp. 815-828 ◽  
Author(s):  
Chinmayee Saikia ◽  
Anowar Hussain ◽  
Anand Ramteke ◽  
Hemanta K. Sharma ◽  
Pritam Deb ◽  
...  

2018 ◽  
Vol 14 (5) ◽  
pp. 432-439 ◽  
Author(s):  
Juliana M. Juarez ◽  
Jorgelina Cussa ◽  
Marcos B. Gomez Costa ◽  
Oscar A. Anunziata

Background: Controlled drug delivery systems can maintain the concentration of drugs in the exact sites of the body within the optimum range and below the toxicity threshold, improving therapeutic efficacy and reducing toxicity. Mesostructured Cellular Foam (MCF) material is a new promising host for drug delivery systems due to high biocompatibility, in vivo biodegradability and low toxicity. Methods: Ketorolac-Tromethamine/MCF composite was synthesized. The material synthesis and loading of ketorolac-tromethamine into MCF pores were successful as shown by XRD, FTIR, TGA, TEM and textural analyses. Results: We obtained promising results for controlled drug release using the novel MCF material. The application of these materials in KETO release is innovative, achieving an initial high release rate and then maintaining a constant rate at high times. This allows keeping drug concentration within the range of therapeutic efficacy, being highly applicable for the treatment of diseases that need a rapid response. The release of KETO/MCF was compared with other containers of KETO (KETO/SBA-15) and commercial tablets. Conclusion: The best model to fit experimental data was Ritger-Peppas equation. Other models used in this work could not properly explain the controlled drug release of this material. The predominant release of KETO from MCF was non-Fickian diffusion.


2021 ◽  
pp. 089270572098557
Author(s):  
M Abu-Abdeen ◽  
O Saber ◽  
E Mousa

A solvent thermal method which depends on a thermal process under critical temperature and pressure was used to prepare cobalt iron oxide magnetic nanoparticles with a molar ratio 2. The prepared particles were in the form of nanoparticles with diameter ranging from 5 to 10 nm and with amorphous structure. Magnetic hysteresis behavior with saturation magnetization 36.31 emu/g and coercivity 4 Oe were observed for the nanoparticles. Polyvinyl alcohol was loaded with different concentrations of cobalt iron oxide nanoparticles using casting technique. Hysteresis loops for the polymer films were observed and both the saturation magnetization and coercivity were increased from 0.36 to 16.03 emu/g and 115 to 293 Oe for samples containing 5 and 20 wt% of nanoparticles, respectively. The elastic modulus of films was increased from 2.7 to 4.9 GPa for unloaded and loaded samples with 20 wt%, respectively. The storage modulus of the polymer films was found to obey the percolation behavior.


Author(s):  
Chang-Mao Hung ◽  
Chiu-Wen Chen ◽  
Yu-Zhe Jhuang ◽  
Cheng-Di Dong

AbstractIn this study, the oxidation of methylene blue (MB) over iron oxide magnetic nanoparticles (Fe


Sign in / Sign up

Export Citation Format

Share Document