scholarly journals Enhancement of Biomass and Calcium Carbonate Biomineralization of Chlorella vulgaris through Plackett–Burman Screening and Box–Behnken Optimization Approach

Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3416
Author(s):  
Zheng Wei Chin ◽  
Kavithraashree Arumugam ◽  
Siti Efliza Ashari ◽  
Fadzlie Wong Faizal Wong ◽  
Joo Shun Tan ◽  
...  

The biosynthesis of calcium carbonate (CaCO3) minerals through a metabolic process known as microbially induced calcium carbonate precipitation (MICP) between diverse microorganisms, and organic/inorganic compounds within their immediate microenvironment, gives rise to a cementitious biomaterial that may emerge as a promissory alternative to conventional cement. Among photosynthetic microalgae, Chlorella vulgaris has been identified as one of the species capable of undergoing such activity in nature. In this study, response surface technique was employed to ascertain the optimum condition for the enhancement of biomass and CaCO3 precipitation of C. vulgaris when cultured in Blue-Green (BG)-11 aquaculture medium. Preliminary screening via Plackett–Burman Design showed that sodium nitrate (NaNO3), sodium acetate, and urea have a significant effect on both target responses (p < 0.05). Further refinement was conducted using Box–Behnken Design based on these three factors. The highest production of 1.517 g/L C. vulgaris biomass and 1.143 g/L of CaCO3 precipitates was achieved with a final recipe comprising of 8.74 mM of NaNO3, 61.40 mM of sodium acetate and 0.143 g/L of urea, respectively. Moreover, polymorphism analyses on the collected minerals through morphological examination via scanning electron microscopy and crystallographic elucidation by X-ray diffraction indicated to predominantly calcite crystalline structure.

2012 ◽  
Vol 178-181 ◽  
pp. 676-679 ◽  
Author(s):  
Tao Duan ◽  
Wen Kun Zhu

The effects of temperature, pH, precipitation time, reactant concentration, the crystal formation additive on the yield of calcium carbonate precipitation induced by bacillus pasteurii were investigated through orthogonal test. The morphology and structure of the calcium carbonate were characterized by scanning electron microscopic (SEM), Fourier transform infrared spectroscopy (IR) and powder X-ray diffraction (XRD). The results showed that the optimum conditions of calcium carbonate precipitation induced by bacillus pasteurii were temperature of 40oC, pH of 8, precipitation time of 3 d, Ca2+ of 1.5 mol/L, and Mg2+ of 0.05 mol/L. The crystal of calcium carbonate was calcites or mixture of calcites and vaterite. Its morphology and packing density were changed by different external conditions.


2010 ◽  
Vol 76 (21) ◽  
pp. 7322-7327 ◽  
Author(s):  
Naoto Yoshida ◽  
Eiji Higashimura ◽  
Yuichi Saeki

ABSTRACT The thermophilic Geobacillus bacterium catalyzed the formation of 100-μm hexagonal crystals at 60°C in a hydrogel containing sodium acetate, calcium chloride, and magnesium sulfate. Under fluorescence microscopy, crystals fluoresced upon excitation at 365 ± 5, 480 ± 20, or 545 ± 15 nm. X-ray diffraction indicated that the crystals were magnesium-calcite in calcite-type calcium carbonate.


Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6211
Author(s):  
Guowang Tang ◽  
Cangqin Jia ◽  
Guihe Wang ◽  
Peizhi Yu ◽  
Haonan Zhang

The use of additives has generated significant attention due to their extensive application in the microbially induced calcium carbonate precipitation (MICP) process. This study aims to discuss the effects of Na-montmorillonite (Na-MMT) on CaCO3 crystallization and sandy soil consolidation through the MICP process. Compared with the traditional MICP method, a larger amount of CaCO3 precipitate was obtained. Moreover, the reaction of Ca2+ ions was accelerated, and bacteria were absorbed by a small amount of Na-MMT. Meanwhile, an increase in the total cementing solution (TCS) was not conducive to the previous reaction. This problem was solved by conducting the reaction with Na-MMT. The polymorphs and morphologies of the CaCO3 precipitates were tested by using X-ray diffraction and scanning electron microscopy. Further, when Na-MMT was used, the morphology of CaCO3 changed from an individual precipitate to agglomerations of the precipitate. Compared to the experiments without Na-MMT in the MICP process, the addition of Na-MMT significantly reduced the hydraulic conductivity (HC) of sandy soil consolidated.


2019 ◽  
Vol 1 (6) ◽  
pp. 622-629
Author(s):  
Balakrishnan Arumugam ◽  
Brinda Elangovan

Bio mineralization is a significant process carried out by living organisms in which minerals are produced through the hardening of biological tissues. Herein, the current study focus on calcium carbonate precipitation, as part of bio mineralization, to be used in applications for CO2 sequestration, material technology, and other fields. A strain B. licheniformis, isolated from marine water, was investigated for its ability to produce urease and induce calcium carbonate precipitation in a metabolic process. It was discovered that B. licheniformis, resisted high concentrations of urea up to 60 g/L. In order to optimize the calcification process of B. licheniformis, the Calcium carbonate precipitation media is used respectively, pH of 10, and culture time of 96 h. Using X-ray diffraction and Scanning Electron Microscopy analysis, the calcium carbonate polymorphs produced by B. licheniformis, were proven to be mainly calcite. The results of this research provide evidence that B. licheniformis can biologically induce calcification and suggest that B. licheniformis may play a potential role in the synthesis of new bio minerals and in bioremediation or bio recovery.


2020 ◽  
Vol 43 (1) ◽  
pp. 7-14
Author(s):  
Ali Can Ersan ◽  
Azmi Seyhun Kipcak ◽  
Meral Yildirim Ozen ◽  
Nurcan Tugrul

AbstractRecently, sonochemistry has been used for the synthesis of inorganic compounds, such as zinc borates. In this study using zinc sulphate heptahydrate (ZnSO4·7H2O) and boric acid (H3BO3) as starting materials, a zinc borate compound in the form of Zn3B6O12·3.5H2O was synthesized using an ultrasonic probe. Product’s characterization was carried out with using X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR) and Raman spectroscopy. Zinc borate compound’s chemical bond structure was observed with Raman and FTIR. From the XRD results it was seen that Zn3B6O12·3.5H2O can be quickly synthesized upon heating at 80°C and 85°C (55 min) or 90°C (45 min) in very high yield (>90%). The minimum particle size obtained was ~143 μm from the SEM results. Zinc borate compound was synthesized at a lower temperature in less time than other synthesized zinc metal compound in literature.


Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 887
Author(s):  
Chunhua Feng ◽  
Buwen Cui ◽  
Haidong Ge ◽  
Yihong Huang ◽  
Wenyan Zhang ◽  
...  

Recycled aggregate is aggregate prepared from construction waste. With the development of a global economy and people’s attention to sustainable development, recycled aggregate has shown advantages in replacing natural aggregate in the production of concrete due to its environmental friendliness, low energy consumption, and low cost. Recycled aggregate exhibits high water absorption and a multi-interface transition zone, which limits its application scope. Researchers have used various methods to improve the properties of recycled aggregate, such as microbially induced calcium carbonate precipitation (MICP) technology. In this paper, the results of recent studies on the reinforcement of recycled aggregate by MICP technology are synthesized, and the factors affecting the strengthening effect of recycled aggregate are reviewed. Moreover, the strengthening mechanism, advantages and disadvantages of MICP technology are summarized. After the modified treatment, the aggregate performance is significantly improved. Regardless of whether the aggregate was used in mortar or concrete, the mechanical properties of the specimens were clearly improved. However, there are some issues regarding the application of MICP technology, such as the use of an expensive culture medium, a long modification cycle, and untargeted mineralization deposition. These difficulties need to be overcome in the future for the industrialization of regenerated aggregate materials via MICP technology.


Sign in / Sign up

Export Citation Format

Share Document