scholarly journals High Reserve in δ-Tocopherol of Peganum harmala Seeds Oil and Antifungal Activity of Oil against Ten Plant Pathogenic Fungi

Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4569
Author(s):  
Abdelhamid Hajji ◽  
Fethi Bnejdi ◽  
Mourad Saadoun ◽  
Ibtissem Ben Salem ◽  
Imededdine Nehdi ◽  
...  

This investigation included the chemical analysis of Peganum harmala (P. harmala) seed oil and its antifungal properties against 10 fungal species. Seed oils of six populations were analyzed using high performance liquid chromatography (HPLC) and gas chromatograph/mass spectrometry (GC-MS). The HPLC analysis indicated that P. harmala seed oil exhibited a very high level of tocopherol contents, with values in the range of 2385.66–2722.68 mg/100 g. The most abundant tocopherol isomer was δ-tocopherol (90.39%), followed by γ-tocopherol (8.08%) and α-tocopherol (1.14%). We discovered for the first time the presence of tocotrenols in P. harmala seed oils of the six populations studied. The GC-MS analyses revealed that linoleic acid was the main fatty acid (65.17%), followed by oleic acid (23.12%), palmitic acid (5.36%) and stearic acid (3.08%). We also studied the antifungal activity of seed oil of the Medenine (MD) population on ten fungal pathogens. The antifungal effects differed among pathogens and depended on oil concentrations. Seed oil of the MD population caused a significant decrease in mycelial growth of all fungi tested, with values ranging 31.50–82.11%, except for Alternaria sp., which showed no inhibition. The antifungal activity against the 10 selected fungi can be explained by the richness in tocols of the extracted oil and make P. harmala a promising crop for biological control. Furthermore, the importance of fatty acids and the wide geographic spread in Tunisia of this species make this crop a potential source of renewable energy.

Genes ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 901 ◽  
Author(s):  
Asiya Gusa ◽  
Sue Jinks-Robertson

Genome rearrangements and ploidy alterations are important for adaptive change in the pathogenic fungal species Candida and Cryptococcus, which propagate primarily through clonal, asexual reproduction. These changes can occur during mitotic growth and lead to enhanced virulence, drug resistance, and persistence in chronic infections. Examples of microevolution during the course of infection were described in both human infections and mouse models. Recent discoveries defining the role of sexual, parasexual, and unisexual cycles in the evolution of these pathogenic fungi further expanded our understanding of the diversity found in and between species. During mitotic growth, damage to DNA in the form of double-strand breaks (DSBs) is repaired, and genome integrity is restored by the homologous recombination and non-homologous end-joining pathways. In addition to faithful repair, these pathways can introduce minor sequence alterations at the break site or lead to more extensive genetic alterations that include loss of heterozygosity, inversions, duplications, deletions, and translocations. In particular, the prevalence of repetitive sequences in fungal genomes provides opportunities for structural rearrangements to be generated by non-allelic (ectopic) recombination. In this review, we describe DSB repair mechanisms and the types of resulting genome alterations that were documented in the model yeast Saccharomyces cerevisiae. The relevance of similar recombination events to stress- and drug-related adaptations and in generating species diversity are discussed for the human fungal pathogens Candida albicans and Cryptococcus neoformans.


2018 ◽  
Vol 7 (3) ◽  
pp. 230-241
Author(s):  
Savita Joshi ◽  
◽  
Parikshit Kumar ◽  
Prabha Pant ◽  
SC Sati ◽  
...  

Fungicidal activity of 10 ethnobotanically known Kumaun Himalayan gymnospermous plants namely Araucaria cunninghamii, Biota orientalis, Cedrus deodara, Cephalotaxus griffithi, Cryptomeria japonica Cupressus torulosa, Ginkgo biloba, Juniperus communis, Picea smithiana and Pinus wallichiana were tested against six plant disease causing fungal pathogens by agar well-diffusion method. Forty extracts of these gymnospermic leaves in different organic solvents (methanol, ethanol, chloroform and hexane) were studied by performing the 160 sets of experiments. The MIC values of each extract (where % inhibition ≥ 40%) were also determined. All the plant extracts exhibited strong antifungal activity. Results indicated that all leaves extracts of C. griffithi and G. biloba were found most effective among the tested plants extracts. Hexane extract of C. griffithi was showed highest inhibitory activity against C. falcatum (72%; MIC, 7.81µg/ml) and T. indica (70%; MIC, 15.62µg/ml). On the other hand, ethanol extract of G. biloba also showed remarkable activity against P. oryzae (66% with MIC, 7.81g/ml). While P. wallichiana leave extracts were found less active among the studied plants against all the tested fungal strains. The chloroform extracts were found the most effective against all the tested fungi (10% to 60%), followed by ethanol extract (30-50%), methanol extract (20-40%), while in hexane extracts ranged 10-30% only. The extracts of C. griffithi exhibited superior Relative Antifungal Activity (RAA, 20%), followed by G. biloba and A. cunninghamii (RAA, 19 and 12%, respectively). All data were also analyzed for determination of total activity of plant for each studied species of gymnosperm. C. griffithi had maximum activity i.e. 71 % followed by G. biloba (54%) and A. cunninghamii (33%). C. torulosa showed the least total activity and RAA i.e. 8% and 3%, respectively. All the plant species assayed possess definite antifungal properties and suggested for phytochemical analysis to identify the active principles responsible for their antifungal activity


mSphere ◽  
2018 ◽  
Vol 3 (2) ◽  
Author(s):  
Eric H. Jung ◽  
David J. Meyers ◽  
Jürgen Bosch ◽  
Arturo Casadevall

ABSTRACTSimilarities in fungal and animal cells make antifungal discovery efforts more difficult than those for other classes of antimicrobial drugs. Currently, there are only three major classes of antifungal drugs used for the treatment of systemic fungal diseases: polyenes, azoles, and echinocandins. Even in situations where the offending fungal organism is susceptible to the available drugs, treatment courses can be lengthy and unsatisfactory, since eradication of infection is often very difficult, especially in individuals with impaired immunity. Consequently, there is a need for new and more effective antifungal drugs. We have identified compounds with significant antifungal activity in the Malaria Box (Medicines for Malaria Ventures, Geneva, Switzerland) that have higher efficacy than some of the currently used antifungal drugs. Our best candidate, MMV665943 (IUPAC name 4-[6-[[2-(4-aminophenyl)-3H-benzimidazol-5-yl]methyl]-1H-benzimidazol-2-yl]aniline), here referred to as DM262, showed 16- to 32-fold-higher activity than fluconazole againstCryptococcus neoformans. There was also significant antifungal activity in other fungal species with known antifungal resistance, such asLomentospora prolificansandCryptococcus gattii. Antifungal activity was also observed against a common fungus,Candida albicans. These results are important because they offer a potentially new class of antifungal drugs and the repurposing of currently available therapeutics.IMPORTANCEMuch like the recent increase in drug-resistant bacteria, there is a rise in antifungal-resistant strains of pathogenic fungi. There is a need for novel and more potent antifungal therapeutics. Consequently, we investigated a mixed library of drug-like and probe-like compounds with activity inPlasmodiumspp. for activity against two common fungal pathogens,Cryptococcus neoformansandCandida albicans, along with two less common pathogenic species,Lomentospora prolificansandCryptococcus gattii. We uncover a previously uncharacterized drug with higher broad-spectrum antifungal activity than some current treatments. Our findings may eventually lead to a compound added to the arsenal of antifungal therapeutics.


Plant Disease ◽  
2018 ◽  
Vol 102 (5) ◽  
pp. 991-1000 ◽  
Author(s):  
Franziska M. Porsche ◽  
Daniel Molitor ◽  
Marco Beyer ◽  
Sophie Charton ◽  
Christelle André ◽  
...  

The antifungal activity of an aqueous extract (AE) and the solid fraction of a chloroform-methanol fruit pericarp extract (CME) of Sapindus mukorossi resolved in water was tested for the first time against Venturia inaequalis and Botrytis cinerea—two important fungal pathogens worldwide. In the greenhouse, a CME (1% vol/vol) spray significantly reduced V. inaequalis symptoms and sporulation (99%) on apple seedling leaves (P ≤ 0.05). In field trials, applications of AE (1% vol/vol) reduced the disease severity of B. cinerea on grape, on average, by 63%. Extracts were fractionated by high-performance liquid chromatography and the bioefficacy of the fractions was tested in vitro. Some components of the most fungicidal fraction were identified by liquid chromatography-high resolution mass spectrometry as saponins: sapindoside B (accounting for ≥98% of the total constituents), hederagenin-pentosylhexoside, and oleanolic acid-hexosyl-deoxyhexosyl-hexoside. This fraction inhibited the mycelial growth of V. inaequalis and B. cinerea by 45 and 43%, respectively.


2021 ◽  
Vol 7 (9) ◽  
Author(s):  
Darcy A. B. Jones ◽  
Paula M. Moolhuijzen ◽  
James K. Hane

Plant diseases caused by fungal pathogens are typically initiated by molecular interactions between ‘effector’ molecules released by a pathogen and receptor molecules on or within the plant host cell. In many cases these effector-receptor interactions directly determine host resistance or susceptibility. The search for fungal effector proteins is a developing area in fungal-plant pathology, with more than 165 distinct confirmed fungal effector proteins in the public domain. For a small number of these, novel effectors can be rapidly discovered across multiple fungal species through the identification of known effector homologues. However, many have no detectable homology by standard sequence-based search methods. This study employs a novel comparison method (RemEff) that is capable of identifying protein families with greater sensitivity than traditional homology-inference methods, leveraging a growing pool of confirmed fungal effector data to enable the prediction of novel fungal effector candidates by protein family association. Resources relating to the RemEff method and data used in this study are available from https://figshare.com/projects/Effector_protein_remote_homology/87965.


2021 ◽  
Vol 7 (3) ◽  
pp. 187
Author(s):  
On-Uma Ruangwong ◽  
Prisana Wonglom ◽  
Nakarin Suwannarach ◽  
Jaturong Kumla ◽  
Narit Thaochan ◽  
...  

Soil microorganisms are well studied for their beneficial effects on plant growth and their impact on biocontrol agents. The production of volatile antifungal compounds emitted from soil fungi is considered to be an effective ability that can be applied in biofumigants in the control of plant diseases. A soil fungus, Trichoderma asperelloides TSU1, was isolated from flamingo flower cultivated soil and identified on the basis of the morphology and molecular analysis of the internal transcribed spacer (ITS), rpb2, and tef1-α genes. To test T. asperelloides TSU1-produced volatile organic compounds (VOCs) with antifungal activity, the sealed plate method was used. The VOCs of T. asperelloides TSU1 inhibited the mycelial growth of fungal pathogens that were recently reported as emerging diseases in Thailand, namely, Corynespora cassiicola, Fusarium incarnatum, Neopestalotiopsis clavispora, N. cubana, and Sclerotium rolfsii, with a percentage inhibition range of 38.88–68.33%. Solid-phase microextraction (SPME) was applied to trap VOCs from T. asperelloides TSU1 and tentatively identify them through gas chromatography–mass spectrometry (GC/MS). A total of 17 compounds were detected in the VOCs of T. asperelloides TSU1, and the dominant compounds were identified as fluoro(trinitro)methane (18.192% peak area) and 2-phenylethanol (9.803% peak area). Interestingly, the commercial 2-phenyethanol showed antifungal activity against fungal pathogens that were similar to the VOCs of T. asperelloides TSU1 by bioassay. On the basis of our study’s results, T. asperelloides TSU1 isolated from soil displayed antifungal abilities via the production of VOCs responsible for restricting pathogen growth.


2021 ◽  
Vol 2 ◽  
Author(s):  
Sima Sadat Seyedjavadi ◽  
Soghra Khani ◽  
Jafar Amani ◽  
Raheleh Halabian ◽  
Mehdi Goudarzi ◽  
...  

Fungal species resistant to current antifungal agents are considered as a serious threat to human health, the dilemma that has dragged attentions toward other sources of antifungals such as antimicrobial peptides (AMPs). In order to improve biological activity of a recently described antifungal peptide MCh-AMP1 from Matricaria chamomilla flowers, MCh-AMP1dimer (DiMCh-AMP1), containing 61 amino acid residues connected by flexible linker (GPDGSGPDESGPDES), was designed and expressed in Escherichia coli, and its structure was analyzed using bioinformatics tools. DiMCh-AMP1 synthetic gene was cloned into pET-28a expression vector, which was then used to transform E. coli BL21 (DE3) strain. His-tag purification was achieved using metal-chelate affinity chromatography. Because there is no methionine residue in the DiMCh-AMP1 sequence, cyanogen bromide was successfully used to separate the target product from the tag. Reverse-phase high-performance liquid chromatography was used as the final step of purification. Results showed that recombinant peptide was produced in considerable amounts (0.9 mg/L) with improved antifungal activity toward both yeasts and molds compared to its monomeric counterpart. The minimum inhibition concentration and minimum fungicidal concentration values of DiMCh-AMP1 against Candida and Aspergillus species were reported in the range of 1.67–6.66 μM and 3.33–26.64 μM, respectively. Our results showed that while antifungal activity of dimerized peptide was improved considerably, its cytotoxicity was decreased, implying that DiMCh-AMP1 could be a potential candidate to design an effective antifungal agent against pathogenic yeasts and molds.


2013 ◽  
Vol 66 (2) ◽  
pp. 95-106 ◽  
Author(s):  
Agnieszka Pszczółkowska ◽  
Adam Okorski ◽  
Jacek Olszewski ◽  
Joanna Jarmołkowicz

Various diagnostic methods were used to evaluate the effect of fungicide protection on the prevalence of pathogenic fungi in wheat grain. Winter wheat cv. Nutka and Zyta was grown during a field experiment established in the Production and Experimental Station in Bałcyny in 2006–2007. The experimental factor was chemical crop protection: epoxiconazole, kresoxim-methyl and fenpropimorph applied at growth stages BBCH 33–35 as well as dimoxystrobin and epoxiconazole applied at BBCH 51–53. In this experiment, microscopic observations and conventional PCR assays were used as complementary methods. The quantification of <em>Fusarium</em> <em>poae</em> DNA by qPCR demonstrated the effectiveness of chemical protection against the analyzed fungal species. Lower monthly precipitation levels and higher daily temperatures intensified grain infections, in particular those caused by <em>F</em>. <em>poae</em>. A significant correlation was determined between the number of <em>F</em>. <em>poae</em> cultures isolated from winter wheat grain and the quantity of pathogenic DNA in grain identified by qPCR. Grain infections caused by <em>F</em>.<em> poae</em> lowered yield and thousand seed weight.


OENO One ◽  
2013 ◽  
Vol 47 (2) ◽  
pp. 73 ◽  
Author(s):  
Pablo García Benavides ◽  
Pedro Martin Zamorano ◽  
Carlos Alvar Ocete ◽  
Lara Maistrello ◽  
Rafael Ocete

<p style="text-align: justify;"><strong>Aim</strong>: Grapevine decline caused by wood fungi seriously threatens viticulture worldwide. In Spain, the polyphagous borer <em>Xylotrechus</em> <em>arvicola</em> (Coleoptera, Cerambycidae) is becoming a serious pest in different Qualified Designation of Origin (DOC) wine regions. The aim of the present work was to identify the fungal species growing in the galleries excavated by <em>X. arvicola</em> larvae inside the vine branches and investigate the possible relationship between wood pathogenic fungi and this borer.</p><p style="text-align: justify;"><strong>Methods and results</strong>: Wood samples from branches of Tempranillo vines and <em>Prunus pisardi</em> trees affected by the borer <em>X. arvicola</em> were collected in La Rioja DOC vineyards (Northern Spain) and analyzed for the presence of fungi using both morphological techniques and genetic tools based on Internal Transcribed Spacer 2 (ITS2) sequence. Among the 20 different fungal species/isolates identified, 7 belonged to fungi associated with grapevine decline (esca, Petri disease, and <em>Eutypa</em> dieback), 6 were plant pathogens, 6 were saprophytic and one was entomopathogenic (<em>Beauveria bassiana</em>).</p><p style="text-align: justify;"><strong>Conclusion</strong>: The fact that 65 % of the fungi detected inside <em>X. arvicola</em> galleries belong to species recognized as plant pathogens suggests that this borer, in addition to causing a progressive decay of the branches, could facilitate the transmission of plant diseases, further threatening the vineyards by spreading grapevine decline pathogens.</p><p style="text-align: justify;"><strong>Significance and impact of the study</strong>: The present work represents a first step in recognizing the association between the fungal pathogens associated with grapevine decline and the borer <em>X. arvicola</em>, suggesting a possible role of this insect as a vector in the transmission of these fungi.</p>


Sign in / Sign up

Export Citation Format

Share Document