scholarly journals Grignard Reagent Utilization Enables a Practical and Scalable Construction of 3-Substituted 5-Chloro-1,6-naphthyridin-4-one Derivatives

Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5667
Author(s):  
Ming-Shu Wang ◽  
Yi Gong ◽  
Zhi-Cheng Yu ◽  
Yan-Guang Tian ◽  
Lin-Sheng Zhuo ◽  
...  

A robust, practical, and scalable approach for the construction of 3-substituted 5-chloro-1,6-naphthyridin-4-one derivatives 13 via the addition of Grignard reagents to 4-amino-2-chloronicotinonitrile (15) was developed. Starting with various Grignard reagents, a wide range of 3-substituted 5-chloro-1,6-naphthyridin-4-one derivatives 13 were conveniently synthesized in moderate-to-good yields through addition–acidolysis–cyclocondensation. In addition, the robustness and applicability of this synthetic route was proven on a 100 g scale, which would enable convenient sample preparation in the preclinical development of 1,6-naphthyridin-4-one-based MET-targeting antitumor drug candidates.

2012 ◽  
Vol 56 (9) ◽  
pp. 4569-4582 ◽  
Author(s):  
Johnny X. Huang ◽  
Sharon L. Bishop-Hurley ◽  
Matthew A. Cooper

ABSTRACTThe vast majority of anti-infective therapeutics on the market or in development are small molecules; however, there is now a nascent pipeline of biological agents in development. Until recently, phage display technologies were used mainly to produce monoclonal antibodies (MAbs) targeted against cancer or inflammatory disease targets. Patent disputes impeded broad use of these methods and contributed to the dearth of candidates in the clinic during the 1990s. Today, however, phage display is recognized as a powerful tool for selecting novel peptides and antibodies that can bind to a wide range of antigens, ranging from whole cells to proteins and lipid targets. In this review, we highlight research that exploits phage display technology as a means of discovering novel therapeutics against infectious diseases, with a focus on antimicrobial peptides and antibodies in clinical or preclinical development. We discuss the different strategies and methods used to derive, select, and develop anti-infectives from phage display libraries and then highlight case studies of drug candidates in the process of development and commercialization. Advances in screening, manufacturing, and humanization technologies now mean that phage display can make a significant contribution in the fight against clinically important pathogens.


2019 ◽  
Vol 26 (23) ◽  
pp. 4323-4354 ◽  
Author(s):  
Ana Cristina Lima Leite ◽  
José Wanderlan Pontes Espíndola ◽  
Marcos Veríssimo de Oliveira Cardoso ◽  
Gevanio Bezerra de Oliveira Filho

Background: Privileged motifs are recurring in a wide range of biologically active compounds that reach different pharmaceutical targets and pathways and could represent a suitable start point to access potential candidates in the neglected diseases field. The current therapies to treat these diseases are based in drugs that lack of the desired effectiveness, affordable methods of synthesis and allow a way to emergence of resistant strains. Due the lack of financial return, only few pharmaceutical companies have been investing in research for new therapeutics for neglected diseases (ND). Methods: Based on the literature search from 2002 to 2016, we discuss how six privileged motifs, focusing phthalimide, isatin, indole, thiosemicarbazone, thiazole, and thiazolidinone are particularly recurrent in compounds active against some of neglected diseases. Results: It was observed that attention was paid particularly for Chagas disease, malaria, tuberculosis, schistosomiasis, leishmaniasis, dengue, African sleeping sickness (Human African Trypanosomiasis - HAT) and toxoplasmosis. It was possible to verify that, among the ND, antitrypanosomal and antiplasmodial activities were between the most searched. Besides, thiosemicarbazone moiety seems to be the most versatile and frequently explored scaffold. As well, phthalimide, isatin, thiazole, and thiazolidone nucleus have been also explored in the ND field. Conclusion: Some described compounds, appear to be promising drug candidates, while others could represent a valuable inspiration in the research for new lead compounds.


2019 ◽  
Vol 14 (2) ◽  
pp. 133-143 ◽  
Author(s):  
Hidayat Hussain ◽  
Ivan R. Green ◽  
Muhammad Saleem ◽  
Khanzadi F. Khattak ◽  
Muhammad Irshad ◽  
...  

Background: Cucurbitacins belong to a group of tetracyclic triterpenoids that display a wide range of biological effects. In the past, numerous cucurbitacins have been isolated from natural sources and many active compounds have been synthesized using the privileged scaffold in order to enhance its cytotoxic effects. Objective: his review covers patents on the therapeutic effects of natural cucurbitacins and their synthetic analogs published during the past decade. By far, the majority of patents published are related to cancer and Structure-Activity Relationships (SAR) of these compounds are included to lend gravitas to this important class of natural products. Methods: The date about the published patents was downloaded via online open access patent databases. Results: Cucurbitacins display significant cytotoxic properties, in particular cucurbitacins B and D which possess very potent effects towards a number of cancer cells. Numerous cucurbitacins isolated from natural sources have been derivatized through chemical modification at the C(2)-OH and C(25)- OH groups. Most importantly, an acyl ester of the C(25)-OH and, iso-propyl, n-propyl and ethyl ether groups of the C(2)-OH demonstrated the most increased cytotoxic activity. Conclusion: The significant cytotoxic effects of natural and semi-synthetic cucurbitacins make them attractive as new drug candidates. Moreover, cucurbitacins have the capability to form conjugates with other anticancer drugs which will synergistically enhance their anticancer effects. The authors believe that in order to get lead compounds, there should be a greater focus on the synthesis of homodimers, heterodimers, and halo derivatives of cucurbitacins. In the opinion of the authors the analysis of the published patents on the cucurbitacins indicates that these compounds can be developed into a regimen to treat a wide spectrum of cancers.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2277
Author(s):  
Piotr M. Kuś ◽  
Igor Jerković

Recently, we proposed a new sample preparation method involving reduced solvent and sample usage, based on dehydration homogeneous liquid–liquid extraction (DHLLE) for the screening of volatiles and semi-volatiles from honey. In the present research, the method was applied to a wide range of honeys (21 different representative unifloral samples) to determine its suitability for detecting characteristic honey compounds from different chemical classes. GC-FID/MS disclosed 130 compounds from different structural and chemical groups. The DHLLE method allowed the extraction and identification of a wide range of previously reported specific and nonspecific marker compounds belonging to different chemical groups (including monoterpenes, norisoprenoids, benzene derivatives, or nitrogen compounds). For example, DHLLE allowed the detection of cornflower honey chemical markers: 3-oxo-retro-α-ionols, 3,4-dihydro-3-oxoedulan, phenyllactic acid; coffee honey markers: theobromine and caffeine; linden honey markers: 4-isopropenylcyclohexa-1,3-diene-1-carboxylic acid and 4-(2-hydroxy-2-propanyl)cyclohexa-1,3-diene-1-carboxylic acid, as well as furan derivatives from buckwheat honey. The obtained results were comparable with the previously reported data on markers of various honey varieties. Considering the application of much lower volumes of very common reagents, DHLLE may provide economical and ecological advantages as an alternative sample preparation method for routine purposes.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 249
Author(s):  
Raquel G. Soengas ◽  
Humberto Rodríguez-Solla

The 1,3-butadiene motif is widely found in many natural products and drug candidates with relevant biological activities. Moreover, dienes are important targets for synthetic chemists, due to their ability to give access to a wide range of functional group transformations, including a broad range of C-C bond-forming processes. Therefore, the stereoselective preparation of dienes have attracted much attention over the past decades, and the search for new synthetic protocols continues unabated. The aim of this review is to give an overview of the diverse methodologies that have emerged in the last decade, with a focus on the synthetic processes that meet the requirements of efficiency and sustainability of modern organic chemistry.


Cancers ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 159
Author(s):  
Tina Schönberger ◽  
Joachim Fandrey ◽  
Katrin Prost-Fingerle

Hypoxia is a key characteristic of tumor tissue. Cancer cells adapt to low oxygen by activating hypoxia-inducible factors (HIFs), ensuring their survival and continued growth despite this hostile environment. Therefore, the inhibition of HIFs and their target genes is a promising and emerging field of cancer research. Several drug candidates target protein–protein interactions or transcription mechanisms of the HIF pathway in order to interfere with activation of this pathway, which is deregulated in a wide range of solid and liquid cancers. Although some inhibitors are already in clinical trials, open questions remain with respect to their modes of action. New imaging technologies using luminescent and fluorescent methods or nanobodies to complement widely used approaches such as chromatin immunoprecipitation may help to answer some of these questions. In this review, we aim to summarize current inhibitor classes targeting the HIF pathway and to provide an overview of in vitro and in vivo techniques that could improve the understanding of inhibitor mechanisms. Unravelling the distinct principles regarding how inhibitors work is an indispensable step for efficient clinical applications and safety of anticancer compounds.


2019 ◽  
Vol 12 (4) ◽  
pp. 150 ◽  
Author(s):  
Dal Ben ◽  
Lambertucci ◽  
Buccioni ◽  
Martí Navia ◽  
Marucci ◽  
...  

Potent and selective adenosine receptor (AR) agonists are of pharmacological interest for the treatment of a wide range of diseases and conditions. Among these derivatives, nucleoside-based agonists represent the great majority of molecules developed and reported to date. However, the limited availability of compounds selective for a specific AR subtype (i.e., A2BAR) and a generally long and complex synthetic route for largely substituted nucleosides are the main drawbacks of this category of molecules. Non-nucleoside agonists represent an alternative set of compounds able to stimulate the AR function and based on simplified structures. This review provides an updated overview on the structural classes of non-nucleoside AR agonists and their biological activities, with emphasis on the main derivatives reported in the literature. A focus is also given to the synthetic routes employed to develop these derivatives and on molecular modeling studies simulating their interaction with ARs.


2014 ◽  
Vol 7 (1) ◽  
pp. 3-33 ◽  
Author(s):  
F. Berthiller ◽  
P.A. Burdaspal ◽  
C. Crews ◽  
M.H. Iha ◽  
R. Krska ◽  
...  

This review highlights developments in mycotoxin analysis and sampling over a period between mid-2012 and mid-2013. It covers the major mycotoxins: aflatoxins, Alternaria toxins, ergot alkaloids, fumonisins, ochratoxins, patulin, trichothecenes and zearalenone. A wide range of analytical methods for mycotoxin determination in food and feed were developed last year, in particular immunochemical methods and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS)-based methods. After a section on sampling and sample preparation, due to the rapid spread and developments in the field of LC-MS/MS multimycotoxin methods, a separate section has been devoted to this area of research. It is followed by a section on mycotoxins in botanicals and spices, before continuing with the format of previous reviews in this series with dedicated sections on method developments for the individual mycotoxins.


Author(s):  
Zahra Zakeri Khatir ◽  
Hamid Irannejad

: 1, 2, 4-Triazine derivatives have received much attention due to their multifunctional nature, especially in diverse pharmacological properties as well as a key fragment in many drug candidates. Introduction of a vicinal 5, 6-diaryl/heteroaryl moiety on the 1, 2, 4-triazine ring has attracted plentiful attention in the field of medicinal chemistry. 5, 6-Diaryl/heteroaryl-3-substituted-1, 2, 4-triazine is as a prominent scaffold in many drug candidates which has shown a wide range of pharmacological activities such as anti-diabetic, antifungal, anti-inflammatory, anticancer, anti-HIV, neuroprotective, anticonvulsant, anti- Alzheimer, anti-Parkinson and antioxidant. In this review, we have discussed synthesis, various pharmacological activities of 5, 6-diaryl/heteroaryl-3-substituted-1, 2, 4-triazines, their structure-activity relationship (SAR), pharmacophoric elements and their mechanism of action reported in the published articles during 2000-2019. Evaluation of compounds by PAINS filtering tool was accomplished and showed that this versatile structure could be considered as a privileged structure. Compilation of the biological data confirmed that the position 3 of the 1,2,4-triazine is a key location to determine the affinity and selectivity of the 5,6-diaryl/heteroaryl-3-substituted-1, 2, 4-triazines towards different biologic targets. Specific geometrical and thermodynamic characters of this motif have prompted it as a frequent hitter.


Author(s):  
Mandy L. Y. Sin ◽  
Pak Kin Wong

AC electrokinetics is a promising approach for sample preparation and reaction enhancement in lab-on-a-chip devices. However, relative little has been done on the electrokinetic manipulation of physiological fluids and buffers with similar properties, such as conductivity. Herein, electrokinetic manipulation of fluids with a wide range of conductivities has been studied as a function of voltage and frequency. AC electrothermal flow is determined to dominate the fluid motion when the applied frequency of the AC potential is above 100 kHz. Interestingly, experimental data deviate from theoretical prediction for fluids with high conductivities (> 1 Sm−1). The deviation can be understood by voltage modulated electrochemical reactions and should be accounted for when manipulating clinical materials with high conductivities. The study will provide useful in sights in designing lab-on-a-chip devices for manipulating clinical samples in the future.


Sign in / Sign up

Export Citation Format

Share Document