scholarly journals Identification and Quantification of Phenolic Compounds from Mexican Oregano (Lippia graveolens HBK) Hydroethanolic Extracts and Evaluation of Its Antioxidant Capacity

Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 702
Author(s):  
María del Carmen Cortés-Chitala ◽  
Héctor Flores-Martínez ◽  
Ignacio Orozco-Ávila ◽  
Carolina León-Campos ◽  
Ángela Suárez-Jacobo ◽  
...  

Plants have been used for thousands of years for various purposes because they have a wide variety of activities with biological significance. Mexican oregano is an aromatic plant of great importance to Mexico and north of Jalisco state as a spice with important economic value. Chromatographic identification and quantification of phenolic compounds and evaluation of their antioxidant activity were important tools to obtain a better characterization of this spice. Phytochemical analysis indicated the presence of flavonoids, triterpenes, saponins, quinones and tannins, the latter at high concentrations. Through chromatographic assays of Mexican oregano extracts, 62 compounds were identified, the major ones being quantified as: taxifolin, apigenin 7-O-glucoside, phlorizin, eriodictyol, quercetin, naringenin, hispidulin, pinocembrin, galangin and genkwanin (compound for the first time reported for this species). The results can be useful as a precedent to establish the bases of new quality characterization parameters and they have also suggested that Mexican oregano contains a wide variety of compounds with untapped importance for the development of new high value-added products.

Metabolites ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 186
Author(s):  
Luana Bontempo ◽  
Daniela Bertoldi ◽  
Pietro Franceschi ◽  
Fabio Rossi ◽  
Roberto Larcher

Umbrian tobacco of the Virginia Bright variety is one of the most appreciated tobaccos in Europe, and one characterized by an excellent yield. In recent years, the Umbria region and local producers have invested in introducing novel practices (for production and processing) focused on environmental, social, and economic sustainability. Due to this, tobacco from Umbria is a leading commodity in the global tobacco industry, and it claims a high economic value. The aim of this study is then to assess if elemental and isotopic compositions can be used to protect the quality and geographical traceability of this particular tobacco. For the first time the characteristic value ranges of the stable isotope ratios of the bio-elements as a whole (δ2H, δ13C, δ15N, δ18O, and δ34S) and of the concentration of 56 macro- and micro-elements are now available, determined in Virginia Bright tobacco produced in two different areas of Italy (Umbria and Veneto), and from other worldwide geographical regions. The ranges of variability of elements and stable isotope ratios had slightly different results, according to the three geographical origins considered. In particular, Umbria samples presented significantly lower content of metals potentially dangerous for human health. The results of this first exploratory work highlight the possibility of characterizing tobacco from Umbria, and suggest widening the scope of the survey throughout Italy and foreign regions, in order to be used to describe the geographical origin of tobacco in general and verify the origin of the products on the market.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4196
Author(s):  
Sofia Gonçalves ◽  
João Ferra ◽  
Nádia Paiva ◽  
Jorge Martins ◽  
Luísa H. Carvalho ◽  
...  

Lignin is a widely abundant renewable source of phenolic compounds. Despite the growing interest on using it as a substitute for its petroleum-based counterparts, only 1 to 2% of the global lignin production is used for obtaining value-added products. Lignosulphonates (LS), derived from the sulphite pulping process, account for 90% of the total market of commercial lignin. The most successful industrial attempts to use lignin for wood adhesives are based on using this polymer as a partial substitute in phenol-formaldehyde or urea-formaldehyde resins. Alternatively, formaldehyde-free adhesives with lignin and lignosulphonates have also been developed with promising results. However, the low number of reactive sites available in lignin’s aromatic ring and high polydispersity have hindered its application in resin synthesis. Currently, finding suitable crosslinkers for LS and decreasing the long pressing time associated with lignin adhesives remains a challenge. Thus, several methods have been proposed to improve the reactivity of lignin molecules. In this paper, techniques to extract, characterize, as well as improve the reactivity of LS are addressed. The most recent advances in the application of LS in wood adhesives, with and without combination with formaldehyde, are also reviewed.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Jun Ren ◽  
Hyang-Mi Lee ◽  
Thi Duc Thai ◽  
Dokyun Na

Abstract Background Industrial biofuels and other value-added products can be produced from metabolically engineered microorganisms. Methylomonas sp. DH-1 is a candidate platform for bioconversion that uses methane as a carbon source. Although several genetic engineering techniques have been developed to work with Methylomonas sp. DH-1, the genetic manipulation of plasmids remains difficult because of the restriction-modification (RM) system present in the bacteria. Therefore, the RM system in Methylomonas sp. DH-1 must be identified to improve the genetic engineering prospects of this microorganism. Results We identified a DNA methylation site, TGGCCA, and its corresponding cytosine methyltransferase for the first time in Methylomonas sp. DH-1 through whole-genome bisulfite sequencing. The methyltransferase was confirmed to methylate the fourth nucleotide of TGGCCA. In general, methylated plasmids exhibited better transformation efficiency under the protection of the RM system than non-methylated plasmids did. As expected, when we transformed Methylomonas sp. DH-1 with plasmid DNA harboring the psy gene, the metabolic flux towards carotenoid increased. The methyltransferase-treated plasmid exhibited an increase in transformation efficiency of 2.5 × 103 CFU/μg (124%). The introduced gene increased the production of carotenoid by 26%. In addition, the methyltransferase-treated plasmid harboring anti-psy sRNA gene exhibited an increase in transformation efficiency by 70% as well. The production of carotenoid was decreased by 40% when the psy gene was translationally repressed by anti-psy sRNA. Conclusions Plasmid DNA methylated by the discovered cytosine methyltransferase from Methylomonas sp. DH-1 had a higher transformation efficiency than non-treated plasmid DNA. The RM system identified in this study may facilitate the plasmid-based genetic manipulation of methanotrophs.


Biomolecules ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 847 ◽  
Author(s):  
Sónia A. O. Santos ◽  
Rafael Félix ◽  
Adriana C. S. Pais ◽  
Sílvia M. Rocha ◽  
Armando J. D. Silvestre

The current interest of the scientific community for the exploitation of high-value compounds from macroalgae is related to the increasing knowledge of their biological activities and health benefits. Macroalgae phenolic compounds, particularly phlorotannins, have gained particular attention due to their specific bioactivities, including antioxidant, antiproliferative, or antidiabetic. Notwithstanding, the characterization of macroalgae phenolic compounds is a multi-step task, with high challenges associated with their isolation and characterization, due to the highly complex and polysaccharide-rich matrix of macroalgae. Therefore, this fraction is far from being fully explored. In fact, a critical revision of the extraction and characterization methodologies already used in the analysis of phenolic compounds from macroalgae is lacking in the literature, and it is of uttermost importance to compile validated methodologies and discourage misleading practices. The aim of this review is to discuss the state-of-the-art of phenolic compounds already identified in green, red, and brown macroalgae, reviewing their structural classification, as well as critically discussing extraction methodologies, chromatographic separation techniques, and the analytical strategies for their characterization, including information about structural identification techniques and key spectroscopic profiles. For the first time, mass spectrometry data of phlorotannins, a chemical family quite exclusive of macroalgae, is compiled and discussed.


Holzforschung ◽  
2012 ◽  
Vol 66 (2) ◽  
Author(s):  
Jaana Liimatainen ◽  
Maarit Karonen ◽  
Jari Sinkkonen ◽  
Marjo Helander ◽  
Juha-Pekka Salminen

Abstract A method has been developed for the characterization of biologically active silver birch (Betula pendula) inner bark phenolics based on high-performance liquid chromatography/diode array detector (HPLC-DAD)/electrospray ionization-mass spectrometry (ESI-MS). It was demonstrated that the inner bark contains high amounts of flavonoids, arylbutanoids, diarylheptanoids, simple phenolic compounds, phenolic acids, lignans, and procyanidins. Altogether, 30 individual compounds were characterized based on their ultraviolet (UV) and MS data. Structures of 22 compounds were confirmed by nuclear magnetic resonance (NMR) spectroscopy. In addition to previously reported phenolic compounds, 12 compounds were identified in silver birch inner bark for the first time; two of them are novel compounds: 3-β-glucopyranosyloxy-2-hydroxy-1-(4-hydroxy-3-methoxy-phenyl)-propan-1-one and 1,7-bis-(4-hydroxyphenyl)-3-heptanol 3-O-β-ap-iofuranosyl-(1→2)-β-glucopyranoside.


2015 ◽  
Vol 18 (3) ◽  
pp. 192-198 ◽  
Author(s):  
Liliana SERNA-COCK ◽  
Diana Patricia VARGAS-MUÑOZ ◽  
Carlos Andrés RENGIFO-GUERRERO

Summary The chemical characterization of the pulp, peel and seeds of cocona (Solanum sessiliflorum Dunal) was determined. In artisanal fruit processing, 26.3% of peel and 9.7% of seeds were obtained. The seeds showed a high potential for the development of value-added products because of their dry matter contents (23.46%) as follows: carbohydrate (69.37% dry basis (d.b.)), nitrogen (3.18 g/100 g of seed d.b.), K (0.023 g/100 g of seed d.b.), Fe (0.0185 g/100 g of seed d.b.) and dietary fiber (21.27 g/100 g of seed d.b.). The carbohydrate, dietary fibre and mineral contents of the pulp, peel and seeds also highlighted the agroindustrial potential of the fruit in that these constituents could be used to develop functional foods, food additives, preparations for functional diets and dietary supplements.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0244327
Author(s):  
Antonio J. Villatoro ◽  
Cristina Alcoholado ◽  
María del Carmen Martín-Astorga ◽  
Gustavo Rico ◽  
Viviana Fernández ◽  
...  

Limbal stem cells (LSCs) are a quiescent cell population responsible for the renewal of the corneal epithelium. Their deficiency is responsible for the conjunctivization of the cornea that is seen in different ocular pathologies, both in humans and in the canine species. The canine species represents an interesting preclinical animal model in ocular surface pathologies. However, the role of LSCs in physiological and pathological conditions in canine species is not well understood. Our objective was to characterize for the first time the soluble factors and the proteomic profile of the secretome and exosomes of canine LSCs (cLSCs). In addition, given the important role that fibroblasts play in the repair of the ocular surface, we evaluated the influence of the secretome and exosomes of cLSCs on their proliferation in vitro. Our results demonstrated a secretory profile of cLSCs with high concentrations of MCP-1, IL-8, VEGF-A, and IL-10, as well as significant production of exosomes. Regarding the proteomic profile, 646 total proteins in the secretome and 356 in exosomes were involved in different biological processes. Functionally, the cLSC secretome showed an inhibitory effect on the proliferation of fibroblasts in vitro, which the exosomes did not. These results open the door to new studies on the possible use of the cLSC secretome or some of its components to treat certain pathologies of the ocular surface in canine species.


2020 ◽  
Author(s):  
S. Mohan ◽  
L. Chithra ◽  
R. Nageswari ◽  
V. Manimozhi Selvi ◽  
M. Mathialagan

Sugarcane is one of the major cash crops, used for the production of sugar and ethanol. Sugarcane processing, results in many by by-products like bagasse, molasses and press mud which have economic value. Also, the by-products serve to generate many value added products. Sugarcane wax is a value added product obtained by the processing of press mud. It has pharmaceutical, agricultural and industrial applications. n-Triacontanol, Policosanol, D-003 acids and waxes are some of the products derived from the sugarcane wax. This article attempt discusses the various methods of extraction of sugarcane wax, its constituents and its characteristics and applications of the products derived from the sugarcane wax.


2017 ◽  
Vol 12 (4) ◽  
pp. 1934578X1701200
Author(s):  
Mariana L. de Mesquita ◽  
José E. de Paula ◽  
Laila S. Espindola ◽  
Luiz A. L. Soares ◽  
Tania M. G. da Silva ◽  
...  

Phytochemical analysis of the ethyl acetate extract of stem wood of Salvertia convallariodora A. St.-Hil. (Vochysiaceae), a Brazilian Cerrado species, led to the isolation and full characterization of three new non-aromatic B-ring flavanones (1-3) as well as the terpene mixture of sericic acid (4), 24-hydroxytormentic acid (5), 24-hydroxytormentic acid glucosyl ester (6), and sericoside (7), all identified for the first time from S. convallariodora. The structures of the new flavanones (1-3) were established from IR, LC-PDA-qTOF-MS, and NMR spectral data, including 2D NMR experiments.


Sign in / Sign up

Export Citation Format

Share Document