scholarly journals Recent Advances in the Use of the Dimerization Strategy as a Means to Increase the Biological Potential of Natural or Synthetic Molecules

Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2340
Author(s):  
Alexis Paquin ◽  
Carlos Reyes-Moreno ◽  
Gervais Bérubé

The design of C2-symmetric biologically active molecules is a subject of interest to the scientific community. It provides the possibility of discovering medicine with higher biological potential than the parent drugs. Such molecules are generally produced by classic chemistry, considering the shortness of reaction sequence and the efficacy for each step. This review describes and analyzes recent advances in the field and emphasizes selected C2-symmetric molecules (or axial symmetric molecules) made during the last 10 years. However, the description of the dimers is contextualized by prior work allowing its development, and they are categorized by their structure and/or by their properties. Hence, this review presents dimers composed of steroids, sugars, and nucleosides; known and synthetic anticancer agents; polyphenol compounds; terpenes, known and synthetic antibacterial agents; and natural products. A special focus on the anticancer potential of the dimers transpires throughout the review, notwithstanding their structure and/or primary biological properties.

2021 ◽  
Vol 14 (12) ◽  
pp. 1293
Author(s):  
Elżbieta Studzińska-Sroka ◽  
Aleksandra Majchrzak-Celińska ◽  
Przemysław Zalewski ◽  
Dominik Szwajgier ◽  
Ewa Baranowska-Wójcik ◽  
...  

Lichens are a source of chemical compounds with valuable biological properties, structurally predisposed to penetration into the central nervous system (CNS). Hence, our research aimed to examine the biological potential of lipophilic extracts of Parmelia sulcata, Evernia prunastri, Cladonia uncialis, and their major secondary metabolites, in the context of searching for new therapies for CNS diseases, mainly glioblastoma multiforme (GBM). The extracts selected for the study were standardized for their content of salazinic acid, evernic acid, and (−)-usnic acid, respectively. The extracts and lichen metabolites were evaluated in terms of their anti-tumor activity, i.e. cytotoxicity against A-172 and T98G cell lines and anti-IDO1, IDO2, TDO activity, their anti-inflammatory properties exerted by anti-COX-2 and anti-hyaluronidase activity, antioxidant activity, and anti-acetylcholinesterase and anti-butyrylcholinesterase activity. The results of this study indicate that lichen-derived compounds and extracts exert significant cytotoxicity against GBM cells, inhibit the kynurenine pathway enzymes, and have anti-inflammatory properties and weak antioxidant and anti-cholinesterase properties. Moreover, evernic acid and (−)-usnic acid were shown to be able to cross the blood-brain barrier. These results demonstrate that lichen-derived extracts and compounds, especially (−)-usnic acid, can be regarded as prototypes of pharmacologically active compounds within the CNS, especially suitable for the treatment of GBM.


Author(s):  
S. O. Fedotov ◽  
A. S. Hotsulia

The combination of various heterocyclic systems with a wide range of properties is quite expedient and is, in practice, a justified direction for obtaining biologically active substances, which ultimately forms a favorable basis for the creation of drugs. In recent decades, the attention of scientists has been closely focused on nitrogen-containing heterocyclic compounds. Among such compounds, 1,2,4-triazole and pyrazole occupy a special place. Indeed, on the basis of these systems, a significant number of well-known drugs have been created, which are widely used at the present time. The aim of the work was the synthesis of S-derivatives of 4-amino-5-(5-methylpyrazol-3-yl)-1,2,4-triazole-3-thiol, study of their physical and chemical properties, pre-screening studies with subsequent establishment of the feasibility of further pharmacological studies. Materials and methods. Experimental methods of organic chemistry: synthesis using microwave activation, physical and chemical methods for the analysis of organic compounds (determination of the melting point, elemental analysis, 1H NMR, IR spectroscopy and chromatography-mass spectrometry). Methods for in silico pre-screening studies to establish the biological potential in several synthesized compounds (molecular docking). Results. 10 new S-derivatives of 4-amino-5-(5-methylpyrazol-3-yl)-1,2,4-triazole-3-thiol were synthesized. The structure of the obtained compounds was confirmed by a set of physical and chemical methods of analysis. According to the results of prescreening studies, the main directions of research of biological properties of synthesized compounds were provided. Conclusions. The expediency of using microwave irradiation in the synthesis of a series of S-alkyl derivatives of 4-amino-5-(5-methylpyrazol-3-yl)-1,2,4-triazole-3-thiol had been proved. Based on the results of in silico studies, the expediency of further studies of anti-inflammatory, antifungal and anticancer activities in several synthesized compounds had been substantiated.


2019 ◽  
Vol 24 (36) ◽  
pp. 4207-4236 ◽  
Author(s):  
Catarina Garcia ◽  
Catarina Teodósio ◽  
Carolina Oliveira ◽  
Cláudia Oliveira ◽  
Ana Díaz-Lanza ◽  
...  

The study of natural sources such as plants, microorganisms and marine organisms has developed interest among the scientific community in recent years for their extensive and diverse chemical composition and consequent biological potential. The search for antitumor compounds is among the lead causes that justify phytochemical studies. Although some natural products have served as FDA approved chemotherapeutic agents, there is still a demand for the search of compounds with those characteristics. The Plectranthus genus has long been used in traditional medicine, and scientific studies have already proven its undeniable value as a source of bioactive compounds. Diterpenes are the most prominent biologically active group of secondary metabolites present in this genus. In particular, abietane diterpenes have long been studied for their biological activities, namely their anti-tumoral potential. In this review, abietane diterpenes isolated from Plectranthus genus with antiproliferative, antitumoral or cytotoxic potential are reported. In addition, a correlation between this subclass of diterpenes with their mechanisms of cell death has been discussed.


2020 ◽  
Vol 21 ◽  
Author(s):  
Shailaja Dombe ◽  
Pramodkumar Shirote

Abstract: Cancer is the most ruinous disease globally. Natural products have impressive characteristics, such as excep-tional chemical versatility, chemical and biological properties of macromolecular specificity and less toxicity which make them good leads in finding novel drugs. The phytochemicals not only help to prevent but also treat chronic cancerous conditions. The present review attempts to put forth some selected anticancer phytochemicals that had reported omics char-acteristic and specifically suppressed cancer with in vitro and in vivo activity. Certain issues pertaining to anticancer phy-tochemicals like delivery to target site in the body and achieving controlled release in order to prevent overdoses havelong been a concern for medical researchers worldwide. The most conventional chemotherapy protocols for the treatment of cancer lead to adverse effects that limit biological efficacy and compromise patient outcomes. In order to defeat incompe-tency of current and upcoming natural anticancer agents and to attain targeted drug delivery with good efficacy and fewer side effects, there is a special focus on novel nanostructured particles and nano approaches consisting of carrier system. Recent studies have led to the discovery of mesoporous and nanoporous drug delivery mechanisms, such as inorganic or organic-based nanosponges. The metal based inorganic systems have exhibited toxicity and non-biodegradable character in vivo. As a result of problems related to inorganic systems, major shift of research from inorganic to organic nanosystems has occurred. About decades ago, researchers have developed organic nanosponges to control the limitation of drug delivery and cancer therapies. This review article discusses the development and application of nanosponges encapsulated phyto-chemicals for cancer therapy.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 699
Author(s):  
Tamrin Nuge ◽  
Ziqian Liu ◽  
Xiaoling Liu ◽  
Bee Chin Ang ◽  
Andri Andriyana ◽  
...  

Volumetric Muscle Loss (VML) is associated with muscle loss function and often untreated and considered part of the natural sequelae of trauma. Various types of biomaterials with different physical and properties have been developed to treat VML. However, much work remains yet to be done before the scaffolds can pass from the bench to the bedside. The present review aims to provide a comprehensive summary of the latest developments in the construction and application of natural polymers-based tissue scaffolding for volumetric muscle injury. Here, the tissue engineering approaches for treating volumetric muscle loss injury are highlighted and recent advances in cell-based therapies using various sources of stem cells are elaborated in detail. An overview of different strategies of tissue scaffolding and their efficacy on skeletal muscle cells regeneration and migration are presented. Furthermore, the present paper discusses a wide range of natural polymers with a special focus on proteins and polysaccharides that are major components of the extracellular matrices. The natural polymers are biologically active and excellently promote cell adhesion and growth. These bio-characteristics justify natural polymers as one of the most attractive options for developing scaffolds for muscle cell regeneration.


2018 ◽  
Vol 25 (4) ◽  
pp. 437-461 ◽  
Author(s):  
Sophie Jurgens ◽  
Fritz E. Kuhn ◽  
Angela Casini

Background: The inherent problems accompanying chemotherapy necessitate the development of new anticancer approaches. The development of compounds that can disrupt cancerous cellular machinery by novel mechanisms, via interactions with proteins and non-canonical DNA structures (e.g. G-quadruplexes), as well as by alteration of the intracellular redox balance, is nowadays focus of intense research. In this context, organometallic compounds of the noble metals Pt and Au have become prominent experimental therapeutic agents. This review provides an overview of the Pt(II) and Au(III) cyclometalated compounds with a chelating ring containing a strong C-M σ -bond to improve the stability of the compounds with respect to ligand exchange reactions and biological reduction. Furthermore, these properties can be easily tuned by modification of either the anionic cyclometalated or the ancillary ligands. Special focus has been set to C^N, C^N^C, C^N^N and C^N^S platinum(II) and gold(III) pincer complexes regarding their synthesis and biological mechanisms of action as anticancer agents. Methods: A structured search of both chemical and medicinal databases for peerreviewed research literature has been conducted. The quality of retrieved papers was appraised using standard tools. The synthesis as well as the chemical and biological properties of the described compounds were carefully reviewed and described. The findings were outlined using a conceptual framework. Results: In this review we included 155 papers, the majority originating from high-impact papers on the synthesis and biological modes of platinum(II) and gold(III) compounds. Among them, 17 papers were highlighted to give an introduction to the use of Pt and Au compounds with medicinal properties, mainly focussing on coordination compounds. The synthesis and medicinal properties of organometallic compounds of various metals (such as Fe, Ru, Ti) were outlined in 51 papers. These compounds included metallocenes, metallo- arenes, metallo-carbonyls, metallo-carbenes (e.g. N-heterocyclic carbenes), and alkynyl complexes. The C^N, C^N^C, C^N^N and C^N^S pincer complexes of platinum( II) (46 papers) and gold(III) (44 papers) were discussed concerning their synthesis, stability and advantages to develop therapeutic compounds. We strove to show the consistent development of C^N, C^N^C, C^N^N and C^N^S platinum(II) and gold(III) pincer complexes regarding their synthesis and biological modes from the early beginnings to the most recent findings. Conclusion: This review supplies a profound overview of the development of organometallic compounds for medicinal purposes, setting special focus to the synthesis and stability of C^N, C^N^C, C^N^N and C^N^S pincer complexes of platinum(II) and gold(III) and their use as anticancer agents.


Author(s):  
Shukla PK ◽  
Singh MP ◽  
Patel R

Indole and its derivatives have engaged a unique place in the chemistry of nitrogen heterocyclic compounds. The recognition of the plant growthhormone, heteroauxin, the significant amino acids, tryptamine & tryptophan and anti-inflammatory drug, indomethacine are the imperativederivatives of indole which have added stimulus to this review work. Isatin (1H-indole-2,3-dione), an indole derivative of plant origin. Althoughit is a naturally occurring compound, but was synthesized by Erdmann and Laurent in 1840 before it was found in nature. Isatin is a versatileprecursor for many biologically active molecules and its diversified nature makes it a versatile substrate for further modifications. It is concernedin many pharmacological activities like anti-malarial, antiviral, anti-allergic, antimicrobial etc; isatin and its derivatives have been also found todemonstrate promising outcomes against various cancer cell lines. This review provides a brief overview on the recent advances and futureperspectives on chemistry and biological aspects of isatin and its derivatives reported in the recent past.


2020 ◽  
Vol 26 (41) ◽  
pp. 7337-7371 ◽  
Author(s):  
Maria A. Chiacchio ◽  
Giuseppe Lanza ◽  
Ugo Chiacchio ◽  
Salvatore V. Giofrè ◽  
Roberto Romeo ◽  
...  

: Heterocyclic compounds represent a significant target for anti-cancer research and drug discovery, due to their structural and chemical diversity. Oxazoles, with oxygen and nitrogen atoms present in the core structure, enable various types of interactions with different enzymes and receptors, favoring the discovery of new drugs. Aim of this review is to describe the most recent reports on the use of oxazole-based compounds in anticancer research, with reference to the newly discovered iso/oxazole-based drugs, to their synthesis and to the evaluation of the most biologically active derivatives. The corresponding dehydrogenated derivatives, i.e. iso/oxazolines and iso/oxazolidines, are also reported.


Author(s):  
Neha V. Bhilare ◽  
Pratibha B. Auti ◽  
Vinayak S. Marulkar ◽  
Vilas J. Pise

: Thiophenes are one among the abundantly found heterocyclic ring systems in many biologically active compounds. Moreover various substituted thiophenes exert numerous pharmacological actions on account of their isosteric resemblance with compounds of natural origin thus rendering them with diverse actions like antibacterial, antifungal, antiviral, anti-inflammatory, analgesic, antiallergic, hypotensives etc.. In this review we specifically explore the chemotherapeutic potential of variety of structures consisting of thiophene scaffolds as prospective anticancer agents.


2018 ◽  
Vol 18 (15) ◽  
pp. 1265-1269 ◽  
Author(s):  
Sreekanth Thota ◽  
Daniel Alencar Rodrigues ◽  
Eliezer J. Barreiro

Sign in / Sign up

Export Citation Format

Share Document