scholarly journals Essential Oils of Seven Lamiaceae Plants and Their Antioxidant Capacity

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3793
Author(s):  
David Aebisher ◽  
Jan Cichonski ◽  
Ewa Szpyrka ◽  
Sygit Masjonis ◽  
Grzegorz Chrzanowski

Oxidative stress has been reported as a cause of many diseases like Parkinson′s, Alzheimer′s, cardiovascular disease, and diabetes. Oxidative stress can also lead to cancer formation by promoting tumor development and progression. Antioxidants derived from Lamiaceae plants play an important role in natural medicine, pharmacology, cosmetology, and aromatherapy. Herein, we examine the antioxidative capacity of essential oils from seven aromatic Lamiaceae plants against the synthetic radicals DPPH and ABTS. Among the essential oils analyzed, the most robust scavenging capacities were found in mixtures of volatile compounds from thyme and savory. The scavenging activity of tested EOs against the ABTS radical was clearly higher than activity towards DPPH. Analysis of essential oils with weaker antioxidant activity has shown that volatile compounds from marjoram, sage, and hyssop were more active than EOs from lavender and mint. It can be suggested that the potent antioxidant capacity of thyme (Thymus vulgaris) and savory (Satyreja hortensis) are related to a high level of phenolic constituents, such as thymol and carvacrol. On the other hand, the elevated antioxidative power of marjoram, sage, and hyssop essential oils may also be due to their terpinene, o-cymene, terpinolene, and terpinen-4-ol constituents. Although non-phenolic components are less active than thymol or carvacrol, they may affect antioxidant capacity synergistically.

Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5600
Author(s):  
Jorge Touma ◽  
Myriam Navarro ◽  
Betsabet Sepúlveda ◽  
Alequis Pavon ◽  
Gino Corsini ◽  
...  

Cryptocarya alba (Peumo; CA) and Laurelia sempervirens (Laurel; LS) are herbs native to the Chilean highlands and have historically been used for medicinal purposes by the Huilliches people. In this work, the essential oils were extracted using hydrodistillation in Clevenger apparatus and analyzed by GC-MS to determine their composition. The antioxidant capacity (AC) was evaluated in vitro. The cytotoxicity was determined using cell line cultures both non tumoral and tumoral. The toxicity was determined using the nematode Caenorhabditis elegans. The antimicrobial activity was evaluated against 52 bacteria using the agar disc diffusion method and the minimum inhibitory concentrations (MICs) were determined. The principal compounds found in C. alba essential oil (CA_EO) were α-terpineol (24.96%) and eucalyptol (21.63%) and were isazafrol (91.9%) in L. sempervirens essential oil (LS_EO). Both EOs showed antioxidant capacity in vitro. Both EO showed antibacterial activity against bacteria using. LS_EO showed more inhibitory effect on these cell lines respect to CA_EO. Both EOs showed toxicity against the nematode C.elegans at 3.12–50 mg/mL. The essential oils of CA and LS have an important bioactive potential in their antioxidant, antibacterial and cytotoxicity activity. Both essential oils could possibly be used in the field of natural medicine, natural food preservation, cosmetics, sanitation and plaguicides among others.


Author(s):  
T. Kondratiuk ◽  
A. Kalinichenko

Antifungal influence of essential oils of the following plants Cariophyllus aromaticus L., Foennicilum vulgare Mill., Lavandula anqustifolia Mill., Mentha piperita L., Melaleuca alternifolia Maid., Origanum vulgare L., Pelargonium roseum Wild., Thymus vulgaris L., and benzalconium chloride on black yeast-like fungi Exophiala alcalophila Goto et Sugiy was investigated. High level of the antifungal influence of plant oils of O. vulgare, Th. vulgaris, P. roseum and C. aromaticus was found with the usage of disc-diffusion method. The influence of plant essential oils mentioned is similar to influence of 3% benzalconium chloride. The following structural-functional reorganization of Exophiala alcalophila, i.e.: exchange of morphometric indices of cells, colony morphology, intensity of budding, dimorphous transition 'yeast-mycelium' were observed under influence of benzalconium chloride and plant essential oils of O. vulgare, Th. vulgaris, P. roseum and C. aromaticus. These exchanges illustrate wide adaptation possibilities of black yeast culture investigated.


Agriculture ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 479
Author(s):  
Ewelina Pogorzelska-Nowicka ◽  
Monika Hanula ◽  
Iwona Wojtasik-Kalinowska ◽  
Adrian Stelmasiak ◽  
Magdalena Zalewska ◽  
...  

Cold conditions are obligatory for mushrooms storage. However, in most cases, the cold chain is interrupted at various stages. Thus, is of great importance to propose a packaging system capable of inhibiting the detrimental effect of high temperature on mushrooms’ quality. The study evaluates the effect of high oxygen atmosphere (80% O2) in conjunction with films of different levels of microperforations (polysulfon (PSF) films, low: PSF_1000, PSF_2000; medium: PSF_3500; and high: PSF_7000) on antioxidant capacity, volatile compounds profile, sensory acceptance, and quality of mushrooms stored at 20 °C. Results showed that high O2 atmosphere inhibits the respiration rate of mushrooms. Application of high O2 atmosphere and film of high level of microperforations preserved desired color and profile of volatile compounds, ensured consumers color and overall acceptance. In turn, the single effect of the perforation level of the applied film was observed for antioxidant capacity, weight loss, vitamin C, malonylodialdehyde (MDA), and phenolics content. Packaging in low microperforated films led to the least amount of phenolics, highest MDA content, and poor antioxidant capacity in mushrooms. In turn, packaging with films of a medium level of perforation contributed to the highest vitamin C and phenolic content. There was no effect of treatment on texture, maturity index, protein content, and percentage of open capped mushrooms.


Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1832
Author(s):  
Renata Jurišić Grubešić ◽  
Marija Nazlić ◽  
Tina Miletić ◽  
Elma Vuko ◽  
Nenad Vuletić ◽  
...  

Previous research on specialized metabolites of olive leaves has focused on the phenolic components and their biological role. The research in this article focuses on the metabolites that form free volatile compounds (FVCs). The composition of FVCs is divided into compounds isolated in the oil phase (essential oils; EO) and in the aqueous phase (hydrosols; Hy) from leaves of Olea europaea L. cultivar Oblica. Plant material was collected from the same olive tree over a six-month period, from December to May, and analyzed by gas chromatography–mass spectrometry (GC–MS). The compounds β-caryophyllene, α-humulene, allo-aromadendrene, docosane, hexadecanoic acid and oleic acid were identified in all EO study periods. In the Hy in all studied periods, the major compounds are α-pinene, β-ionone, myristicin, docosane, 1-hexanol, oleic acid and (E)-β-damascenone. The differences in the qualitative composition of FVC are directly related to the phenological development of the leaves. Antioxidant capacity of the EOs and hydrosols was measured with two methods, ORAC and DPPH. Hydrosol extracts showed higher capacity than the EOs in all methods.


Planta Medica ◽  
2007 ◽  
Vol 73 (09) ◽  
Author(s):  
EG Nkouaya Mbanjo ◽  
F Tchoumbougnang ◽  
PM Jazet Dongmo ◽  
ML Sameza ◽  
PH Amvam Zollo ◽  
...  

Author(s):  
I. A. Umnyagina ◽  
L. A. Strakhova ◽  
T. V. Blinova

In the blood serum of 70% individuals exposed to harmful factors of the working environment, a high level of oxidative stress and the DNA damage marker 8-Hydroxy-2’-Deoxyguanosine (8-OHdG) were detected.


2019 ◽  
Vol 22 (7) ◽  
pp. 496-501
Author(s):  
Fatemeh Ahmadi-Motamayel ◽  
Parisa Falsafi ◽  
Hamidreza Abolsamadi ◽  
Mohammad T. Goodarzi ◽  
Jalal Poorolajal

Background: Cigarette smoke free radicals can cause cellular damage and different diseases. All the body fluids have antioxidants which protect against free radicals. Objective: The aim of this study was to evaluate salivary total antioxidant capacity and peroxidase, uric acid and malondialdehyde levels in smokers and a nonsmoking control group. Methods: Unstimulated saliva was collected from 510 males. A total of 259 subjects were current smokers and 251 were non-smokers. The levels of salivary total antioxidant capacity, uric acid, peroxidase and malondialdehyde were measured using standard procedures. Data were analyzed with t test and ANOVA. Results: The smokers were younger and dental hygiene index was higher than healthy nonsmoking controls. The mean total antioxidant capacity in smokers and nonsmokers was 0.13±0.07 and 0.21±011, respectively (P=0.001). Smokers had significantly lower peroxidase and uric acid levels than healthy controls. In addition, the mean malondialdehyde levels in the smokers and nonsmokers were 4.55 ±2.61 and 2.79 ±2.21, respectively (P=0.001). Conclusion: Cigarette smoke produces free radical and oxidative stress, causing many side effects. Salivary antioxidant levels decreased and malondialdehyde levels increased in smokers, indicating the high oxidative stress among smokers compared to nonsmokers. Cigarette smoke had deleterious effects on main salivary antioxidants levels.


Antioxidants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 77
Author(s):  
Jing-Hua Wang ◽  
Sung-Bae Lee ◽  
Dong-Soo Lee ◽  
Chang-Gue Son

Oxidative stress plays a pivotal role in the progression of chronic hepatitis B; however, it is unclear whether the status of blood oxidative stress and antioxidant components differs depending on the degree of hepatic fibrosis. To explore the relationship between oxidative stress/antioxidant capacity and the extent of hepatic fibrosis, fifty-four subjects with liver fibrosis (5.5 ≤ liver stiffness measurement (LSM) score ≤ 16.0 kPa) by chronic hepatitis B virus (HBV) were analyzed. From the analysis of eight kinds of serum oxidative stress/antioxidant profiles and liver fibrosis degrees, the level of total antioxidant capacity (TAC) reflected a negative correlation with the severity of hepatic fibrosis (Pearson correlation, r = −0.35, p = 0.01). Moreover, TAC showed higher sensitivity (73.91%) than the aspartate transaminase (AST) to platelet ratio index (APRI, 56.52%) in the receiver operating characteristic (ROC) curves. Interestingly, the TAC level finely reflected the fibrosis degree in inactive carriers (HBV DNA < 2000 IU/mL), while the APRI did in active carriers (HBV DNA > 2000 IU/mL). In conclusion, TAC is a promising biomarker for evaluating the progression of liver fibrosis in patients with HBV, and this finding may indicate the involvement of TAC-composing factors in the pathogenesis of hepatic fibrosis in chronic HBV carriers.


Sign in / Sign up

Export Citation Format

Share Document