scholarly journals The Regulatory Effects of Licochalcone A on the Intestinal Epithelium and Gut Microbiota in Murine Colitis

Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4149
Author(s):  
Juan Zhang ◽  
Li Cao ◽  
Yu Sun ◽  
De-Gang Qing ◽  
Xiao-Qin Xu ◽  
...  

The gut epithelium is a mechanical barrier that protects the host from the luminal microenvironment and interacts with the gut microflora, which influences the development and progression of ulcerative colitis (UC). Licochalcone A (LA) exerts anti-inflammatory effects against UC; however, whether it also regulates both the gut barrier and microbiota during colitis is unknown. The current study was conducted to reveal the regulatory effects of LA on the intestinal epithelium and gut microflora in C57BL/6 mice subjected to dextran sodium sulfate (DSS). Sulfasalazine (SASP) was used as the positive control. Results of clinical symptoms evaluation, hematoxylin, and eosin (H&E) staining, and enzyme-linked immunosorbent (ELISA) assays showed that LA significantly inhibited DSS-induced weight loss, disease activity index (DAI) increase, histological damage, and gut inflammation. Additionally, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and immunohistochemical (IHC) analysis showed that LA maintained the integrity of the intestinal barrier by suppressing cell apoptosis and preserving the expression of tight junction (TJ) proteins. Notably, the optimal dose of LA for gut barrier preservation was low, while that for anti-inflammatory effects was high, indicating that LA might preserve gut barrier integrity via direct effects on the epithelial cells (ECs) and TJ proteins. Furthermore, 16S rRNA analysis suggested that the regulatory effect of LA on the gut microbiota differed distinctly according to dose. Correlation analysis indicated that a low dose of LA significantly modulated the intestinal barrier-associated bacteria as compared with a moderate or high dose of LA. Western blot (WB) analysis indicated that LA exhibited anti-UC activity partly by blocking the mitogen-activated protein kinase (MAPK) pathway. Our results further elucidate the pharmacological activity of LA against UC and will provide valuable information for future studies regarding on the regulatory effects of LA on enteric diseases.

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Zhongmei Sun ◽  
Wenjing Pei ◽  
Yi Guo ◽  
Zhibin Wang ◽  
Rui Shi ◽  
...  

Qingchang Wenzhong Decoction (QCWZD) is a newly developed, effective traditional Chinese herbal formulation for ulcerative colitis (UC). In earlier studies, we found that QCWZD could relieve the clinical symptoms of UC patients, reduce inflammation, and improve the intestinal barrier function in dextran sulphate sodium (DSS)-induced UC rats. However, the relationship between QCWZD and the gut microbiota in colitis was not clarified. In this study, we established a rat model of DSS-induced UC and then investigated the regulatory effects of QCWZD on the gut microbiota using 16S rRNA analysis. We also determined the expression of NLRP12 after QCWZD administration. Our findings suggested that QCWZD administration could modulate gut microbiota composition and selectively promote the protective strains such asButyricimonas,Blautia,andOdoribacter,whereas the enteric pathogens includingClostridiumandDoreawere significantly reduced after QCWZD treatment. It is noteworthy that QCWZD administration was identified to promote gut microbiota-mediated NLRP12 expression by inhibiting the activity of the TLR4/Blimp-1 axis. In conclusion, our study supports the potential of QCWZD administration as a beneficial therapeutic strategy for UC.


Nanoscale ◽  
2021 ◽  
Author(s):  
Jiyan Qiao ◽  
Rui Chen ◽  
Mengjie Wang ◽  
Ru Bai ◽  
Xuejing Cui ◽  
...  

Exposure to micro/nanoplastics (M/NPLs) deteriorates the intestinal barrier by disturbing the bacterial composition in the gut.


2018 ◽  
Vol 45 (2) ◽  
pp. 474-490 ◽  
Author(s):  
Mingming Yin ◽  
Xuebing Yan ◽  
Wenhao Weng ◽  
Yongzhi Yang ◽  
Renyuan Gao ◽  
...  

Background/Aims: Recent studies have demonstrated that the manipulation of the gut microbiome represents a promising treatment for inflammatory bowel disease (IBD). We previously identified micro integral membrane protein (MIMP) as the smallest domain of surface layer protein from Lactobacillus Plantarum. However, the therapeutic relevance of MIMP in IBD remains unknown. Methods: We initially employed a dextran sodium sulphate (DSS)-induced colitis model and evaluated the effect of MIMP on the inflammation response, intestinal barrier and gut microbiota using histological examination, Fluorescein isothiocyanate-Dextran detection and pyrosequencing analysis respectively. We then established peripheral blood mononuclear cells (PBMCs) and an epithelial CaCO-2 co-culture model to investigate the regulatory role of MIMP in inflammatory cytokines. The level changes of inflammatory cytokines were detected using Enzyme-linked immunosorbent and real-time polymerase chain reaction assay. The involved regulatory mechanisms were investigated mainly using dual luciferase reporter and chromatin immunoprecipitation assay. Results: In the DSS-induced colitis model, we observed that MIMP intervention effectively improved the body weight loss, increased the colon length and decreased disease activity index. Consistently, the inflammation scores in the MIMP treatment group were significantly lower than those in the DSS treatment group. Furthermore, MIMP intervention was found to successfully neutralize DSS treatment by decreasing the expression of pro-inflammatory cytokines (IFN-γ, IL-17 and IL-23) and increasing the expression of anti-inflammatory cytokines (IL-4 and IL-10). Notably, the permeability assay demonstrated that the MIMP treatment group was remarkably lower than that in the DSS treatment group. We also showed that MIMP improved gut microbiota dysbiosis caused by DSS-induced inflammation. Additionally, in PBMCs and the CaCO-2 co-culture model, MIMP showed an obvious suppressive effect on lipopolysaccharide-induced inflammation in a time- and dose-dependent manner. Furthermore, we revealed that MIMP could modulate inflammatory cytokine expression through the toll-like receptor 4 pathway and histone acetylation. Conclusions: Our results suggested that MIMP showed a significant anti-inflammatory effect through regulating the gut barrier, microbiota and inflammatory cytokines. MIMP may have translational relevance as clinically relevant therapy for IBD patients.


2021 ◽  
Vol 12 ◽  
Author(s):  
Haoran Ke ◽  
Fang Li ◽  
Wenlin Deng ◽  
Zitong Li ◽  
Siqi Wang ◽  
...  

The present study aimed to determine if metformin exerts anti-inflammatory and mucus-protective effects via the gut microbiota. Metformin has extensive benefits including anti-inflammatory effects. Previous studies showed that metformin changed the gut microbiota composition and increases the number of goblet cells. Intestinal dysbiosis and goblet cell depletion are important features of ulcerative colitis (UC). The underlying mechanism and whether metformin can improve the mucus barrier in UC remain unclear. Metformin (400 mg/kg/day) was administered to mice with dextran sulfate sodium (DSS)-induced UC for 2 wk to investigate the effects of metformin on the intestinal mucus barrier. The gut microbiota was depleted, using antibiotics, to explore its role in the mucus-protecting effects of metformin. Akkermansia muciniphila (A. muciniphila), which was enriched in metformin-treated mice, was administered to mice to investigate the effects of the bacteria on UC and the mucus barrier. Metformin attenuated DSS-induced UC in mice, as evidenced by the alleviation of diarrhea, hematochezia, and the decrease in body weight. The expression of mucin2, a prominent mucus barrier protein, was increased in the metformin-treated group compared to the DSS-treated group. Furthermore, fecal 16S rRNA analysis showed that metformin treatment changed the gut microbiota composition by increasing the relative abundance of Lactobacillus and Akkermansia species while decreasing Erysipelatoclostridium at the genus level. Antibiotic treatment partly abolished the anti-inflammatory and mucus-protecting effects of metformin. Administration of A. muciniphila alleviated the colonic inflammation and mucus barrier disruption. Metformin alleviated DSS-induced UC in mice and protected against cell damage via affecting the gut microbiota, thereby providing a new mechanism for the therapeutic effect of metformin in patients with UC. This study also provides evidence that A. muciniphila as a probiotic has potential benefits for UC.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Boxun Zhang ◽  
Rensong Yue ◽  
Yuan Chen ◽  
Xiaoying Huang ◽  
Maoyi Yang ◽  
...  

Recent studies have confirmed that increased intestinal permeability and gut-origin lipopolysaccharide (LPS) translocation are important causes of metabolic inflammation in type 2 diabetes (T2D), but there are no recognized therapies for targeting this pathological state. Scutellaria baicalensis and Coptis chinensis are a classic herbal pair often used to treat diabetes and various intestinal diseases, and repair of intestinal barrier damage may be at the core of their therapeutic mechanism. This study investigated the effects of oral administration of Scutellaria-Coptis (SC) on the intestinal mucosal barrier in diabetic rats and explored the underlying mechanism from the perspective of anti-inflammatory and gut microbiota-modulatory effects. The main results showed that, in addition to regulating glycolipid metabolism disorders and inhibiting serum inflammatory factors, SC could also upregulate the expression levels of the tight junction proteins claudin-1, occludin, and zonula occludens (ZO-1), significantly improve intestinal epithelial damage, and inhibit excessive LPS translocation into the blood circulation. Furthermore, it was found that SC could reduce the levels of the inflammatory factors interleukin-1β (IL-1β), IL-6, and tumour necrosis factor-α (TNF-α) in intestinal tissue and that the anti-inflammatory effects involved the TLR-4/TRIF and TNFR-1/NF-κB signalling pathways. Moreover, SC had a strong inhibitory effect on some potential enteropathogenic bacteria and LPS-producing bacteria, such as Proteobacteria, Enterobacteriaceae, Enterobacter, Escherichia-Shigella, and Enterococcus, and could also promote the proliferation of butyrate-producing bacteria, such as Lachnospiraceae and Prevotellaceae. Taken together, the hypoglycaemic effects of SC were related to the protection of the intestinal mucosal barrier, and the mechanisms might be related to the inhibition of intestinal inflammation and the regulation of the gut microbiota.


Marine Drugs ◽  
2021 ◽  
Vol 19 (3) ◽  
pp. 127
Author(s):  
Xing-Wei Xiang ◽  
Xiao-Ling Zhou ◽  
Rui Wang ◽  
Cong-Han Shu ◽  
Yu-Fang Zhou ◽  
...  

Bioactive peptides isolated from marine organisms have shown to have potential anti-inflammatory effects. This study aimed to investigate the intestinal protection effect of low molecular peptides (Mw < 1 kDa) produced through enzymatic hydrolysis of tuna processing waste (tuna bioactive peptides (TBP)) on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in BALB/c mice. Here, we randomly divided twenty-four male BALB/c mice into four groups: (i) normal (untreated), (ii) DSS-induced model colitis, (iii) low dose TBP+DSS-treated (200 mg/kg/d), and (iv) high dose TBP+DSS-treated groups (500 mg/kg/d). The results showed that TBP significantly reduced mice weight loss and improved morphological and pathological characteristics of colon tissues. In addition, it increased the activities of antioxidant enzymes (SOD and GSH-Px) and decreased inflammatory factors (LPS, IL-6, and TNF-α) expression. TBP increased the gene expression levels of some tight junction (TJ) proteins. Moreover, TBP increased the short-chain fatty acids (SCFAs) levels and the diversity and imbalance of intestinal flora. Therefore, TBP plays some protective roles in the intestinal tract by enhancing antioxidant and anti-inflammatory abilities of the body, improving the intestinal barrier and metabolic abnormalities, and adjusting intestinal flora imbalance.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Xuelian Tang ◽  
Weijun Wang ◽  
Gaichao Hong ◽  
Caihan Duan ◽  
Siran Zhu ◽  
...  

Abstract Background and aims Previous study disclosed Fucosyltransferase 2 (Fut2) gene as a IBD risk locus. This study aimed to explore the mechanism of Fut2 in IBD susceptibility and to propose a new strategy for the treatment of IBD. Methods Intestinal epithelium-specific Fut2 knockout (Fut2△IEC) mice was used. Colitis was induced by dextran sulfate sodium (DSS). The composition and diversity of gut microbiota were assessed via 16S rRNA analysis and the metabolomic findings was obtained from mice feces via metabolite profiling. The fecal microbiota transplantation (FMT) experiment was performed to confirm the association of gut microbiota and LPC. WT mice were treated with Lysophosphatidylcholine (LPC) to verify its impact on colitis. Results The expression of Fut2 and α-1,2-fucosylation in colonic tissues were decreased in patients with UC (UC vs. control, P = 0.036) and CD (CD vs. control, P = 0.031). When treated with DSS, in comparison to WT mice, more severe intestinal inflammation and destructive barrier functions in Fut2△IEC mice was noted. Lower gut microbiota diversity was observed in Fut2△IEC mice compared with WT mice (p < 0.001). When exposed to DSS, gut bacterial diversity and composition altered obviously in Fut2△IEC mice and the fecal concentration of LPC was increased. FMT experiment revealed that mice received the fecal microbiota from Fut2△IEC mice exhibited more severe colitis and higher fecal LPC concentration. Correlation analysis showed that the concentration of LPC was positively correlated with four bacteria—Escherichia, Bilophila, Enterorhabdus and Gordonibacter. Furthermore, LPC was proved to promote the release of pro-inflammatory cytokines and damage epithelial barrier in vitro and in vivo. Conclusion Fut2 and α-1,2-fucosylation in colon were decreased not only in CD but also in UC patients. Gut microbiota in Fut2△IEC mice is altered structurally and functionally, promoting generation of LPC which was proved to promote inflammation and damage epithelial barrier.


2021 ◽  
pp. 129532
Author(s):  
Bowei Zhang ◽  
Yingchuan Xu ◽  
Huan Lv ◽  
Wenwen Pang ◽  
Jin Wang ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Li Wang ◽  
Huantian Cui ◽  
Yuting Li ◽  
Min Cao ◽  
Shanshan Man ◽  
...  

Kang-Xian (KX) pills have been clinically used for the treatment of chronic hepatic injury (CHI). However, the mechanisms of KX on CHI remain unknown. The aim of this study mainly focused on the anti-inflammatory effects of KX in a CHI mouse model based on modulating gut microbiota and gut permeability. We first established a CHI model using carbon tetrachloride (CCl4) and treated it with KX. The anti-inflammatory effects of KX on CHI model mice and the changes in gut permeability after KX treatment were also investigated. 16S rRNA analysis was used to study the changes of gut microbiota composition after KX treatment. In addition, gut microbiota was depleted using a combination of antibiotics in order to further confirm that KX could inhibit the inflammatory response and decrease gut permeability to treat CHI by modulating the gut microbiota. Results showed that KX treatment significantly improved liver function in CHI model mice. KX could also increase the levels of tight junction proteins in the colon and decrease the expression of proinflammatory cytokines in the liver. 16S rRNA analysis indicated that KX treatment affected the alpha and beta diversities in CHI model mice. Further analysis of 16S rRNA sequencing indicated that KX treatment increased the ratio of Firmicutes to Bacteroidetes at the phylum level. At the genus level, KX treatment increased the relative abundance of Lactobacillus, Bacteroides, and Akkermansia and decreased the relative abundance of Ralstonia, Alloprevotella, and Lachnoclostridium. However, KX could not alleviate CHI after depleting the gut microbiota. The effects of KX on gut permeability and inflammatory response in the liver were also decreased following the depletion of gut microbiota. In conclusion, our current study demonstrated that gut microbiota was significantly affected during CHI progression. KX could inhibit the inflammatory response and decrease the gut permeability in CHI model mice through modulating the gut microbiota.


Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1278
Author(s):  
Antonius T. Otten ◽  
Arno R. Bourgonje ◽  
Vera Peters ◽  
Behrooz Z. Alizadeh ◽  
Gerard Dijkstra ◽  
...  

Gut microbes are crucial to human health, but microbial composition is often disturbed in a number of human diseases. Accumulating evidence points to nutritional modulation of the gut microbiota as a potentially beneficial therapeutic strategy. Vitamin C (ascorbic acid) may be of particular interest as it has known antioxidant and anti-inflammatory properties. In this study, we investigated whether supplementation with high-dose vitamin C may favourably affect the composition of the gut microbiota. In this pilot study, healthy human participants received 1000 mg vitamin C supplementation daily for two weeks. Gut microbiota composition was analysed before and after intervention by performing faecal 16S rRNA gene sequencing. In total, 14 healthy participants were included. Daily supplementation of high-dose vitamin C led to an increase in the relative abundances of Lachnospiraceae (p < 0.05), whereas decreases were observed for Bacteroidetes (p < 0.01), Enterococci (p < 0.01) and Gemmiger formicilis (p < 0.05). In addition, trends for bacterial shifts were observed for Blautia (increase) and Streptococcus thermophilus (decrease). High-dose vitamin C supplementation for two weeks shows microbiota-modulating effects in healthy individuals, with several beneficial shifts of bacterial populations. This may be relevant as these bacteria have anti-inflammatory properties and strongly associate with gut health.


Sign in / Sign up

Export Citation Format

Share Document