scholarly journals Incorporation of Metal-Based Nanoadditives into the PLA Matrix: Effect of Surface Properties on Antibacterial Activity and Mechanical Performance of PLA Nanoadditive Films

Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4161
Author(s):  
Klementina Pušnik Črešnar ◽  
Alexandra Aulova ◽  
Dimitrios N. Bikiaris ◽  
Dimitra Lambropoulou ◽  
Katja Kuzmič ◽  
...  

In this work, the modification process of poly(lactic acid) (PLA) with metal-based nanoparticle (NPs) additives (Ag, ZnO, TiO2) at different loading (0.5, 1.0, and 2.5 wt%) and by melt-mix extrusion method followed by film formation as one of the advantageous techniques for industrial application have been investigated. PLA nanoparticle composite films (PLA-NPs) of PLA-Ag, PLA-ZnO, PLA-TiO2 were fabricated, allowing convenient dispersion of NPs within the PLA matrix to further pursue the challenge of investigating the surface properties of PLA-NPs reinforced plastics (as films) for the final functional properties, such as antimicrobial activity and surface mechanical properties. The main objective was to clarify how the addition of NPs to the PLA during the melt extrusion process affects the chemistry, morphology, and wettability of the surface and its further influence on the antibacterial efficiency and mechanical properties of the PLA-NPs. Therefore, the effect of Ag, ZnO, and TiO2 NPs incorporation on the morphology (SEM), elemental mapping analysis (SEM-EDX), roughness, surface free energy (SFE) of PLA-NPs measured by goniometry and calculated by OWRK (Owens, Wendt, Rabel, and Kaelble) model was evaluated and correlated with the final functional properties such as antimicrobial activity and surface mechanical properties. The developed PLA-metal-based nanocomposites, with improved mechanical and antimicrobial surface properties, could be used as sustainable and biodegradable materials, offering desirable multifunctionalities not only for food packaging but also for cosmetics and hygiene products, as well as for broader plastic products where antimicrobial activity is desirable.

Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4910 ◽  
Author(s):  
Alejandro Aragón-Gutierrez ◽  
Marina P. Arrieta ◽  
Mar López-González ◽  
Marta Fernández-García ◽  
Daniel López

Bionanocomposites based on poly (lactic acid) (PLA) and silica aerogel (SiA) were developed by means of melt extrusion process. PLA-SiA composite films were plasticized with 15 wt.% of acetyl (tributyl citrate) (ATBC) to facilitate the PLA processability as well as to attain flexible polymeric formulations for films for food packaging purposes. Meanwhile, SiA was added in four different proportions (0.5, 1, 3 and 5 wt.%) to evaluate the ability of SiA to improve the thermal, mechanical, and barrier performance of the bionanocomposites. The mechanical performance, thermal stability as well as the barrier properties against different gases (carbon dioxide, nitrogen, and oxygen) of the bionanocomposites were evaluated. It was observed that the addition of 3 wt.% of SiA to the plasticized PLA-ATBC matrix showed simultaneously an improvement on the thermal stability as well as the mechanical and barrier performance of films. Finally, PLA-SiA film formulations were disintegrated in compost at the lab-scale level. The combination of ATBC and SiA sped up the disintegration of PLA matrix. Thus, the bionanocomposites produced here show great potential as sustainable polymeric formulations with interest in the food packaging sector.


2021 ◽  
Vol 317 ◽  
pp. 333-340
Author(s):  
Mohammed Zorah ◽  
Izan Roshawaty Mustapa ◽  
Norlinda Daud ◽  
Nahida Jumah ◽  
Nur Ain Syafiqah Sudin ◽  
...  

Poly (lactic acid) (PLA) is a useful alternative to petrochemical commodity material used in such as in food packaging industries. Due to its inherent brittleness, low thermal stability, and poor crystallization, it needs to improve its properties, namely in terms of thermal and mechanical performance. The plasticized PLA composites reinforced with nanofiller were prepared by solvent casting and hot press methods. Thermal and mechanical properties, as well as the crystallinity study of these nanocomposites, were investigated to study the effect of tributyl citrate (TBC) and TiO2 on the PLA composites. The addition of TBC improved the flexibility and crystallinity of the composites. Reinforcement of TiO2 was found as a practical approach to improve the mechanical properties, thermal stability, and enhanced crystalline ability for plasticized PLA nanocomposites. Based on the results achieved in this study, the composite with 3.5% nanofiller (pPLATi3.5) presented the optimum set of mechanical properties and improved thermal stability.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ji Sou Lyu ◽  
Jung-Soo Lee ◽  
Jaejoon Han

AbstractIn the present study, polycaprolactone (PCL) composite films incorporated with various concentrations of grapefruit seed extract (GSE) as an antimicrobial agent were prepared using a twin-screw extruder. Physical characteristics as well as antimicrobial properties of the PCL/GSE composite films were analyzed. The results showed that the surface color of the films gradually changed with increasing GSE concentration. Fourier transform infrared spectra indicated no significant structural changes such as chemical bond formation between PCL and GSE. Thermal properties were slightly affected due to GSE incorporation. Crystallinity of the composite films decreased as the amount of GSE increased. In vitro analysis indicated that the antimicrobial activity of the PCL/GSE composite films increased as the GSE concentration increased, with a 5% concentration showing the strongest inhibitory activity against Listeria monocytogenes, with 5.8-log reduction in bacterial count. Application testing of the films was carried out for cheese packaging, and biodegradation of the samples was assessed via soil burial testing. Our findings confirmed the potential use of PCL/GSE composite films as biodegradable food packaging material with antimicrobial activity.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2133
Author(s):  
Helena Oliver-Ortega ◽  
Josep Tresserras ◽  
Fernando Julian ◽  
Manel Alcalà ◽  
Alba Bala ◽  
...  

Packaging consumes around 40% of the total plastic production. One of the most important fields with high requirements is food packaging. Food packaging products have been commonly produced with petrol polymers, but due to environmental concerns, the market is being moved to biopolymers. Poly (lactic acid) (PLA) is the most promising biopolymer, as it is bio-based and biodegradable, and it is well established in the market. Nonetheless, its barrier properties need to be enhanced to be competitive with other polymers such as polyethylene terephthalate (PET). Nanoclays improve the barrier properties of polymeric materials if correct dispersion and exfoliation are obtained. Thus, it marks a milestone to obtain an appropriate dispersion. A predispersed methodology is proposed as a compounding process to improve the dispersion of these composites instead of common melt procedures. Afterwards, the effect of the polarity of the matrix was analyzing using polar and surface modified nanoclays with contents ranging from 2 to 8% w/w. The results showed the suitability of the predispersed and concentrated compound, technically named masterbatch, to obtain intercalated structures and the higher dispersion of polar nanoclays. Finally, the mechanical performance and sustainability of the prepared materials were simulated in a food tray, showing the best assessment of these materials and their lower fingerprint.


2021 ◽  
Vol 36 (2) ◽  
pp. 219-227
Author(s):  
P. Saiprasit ◽  
A. K. Schlarb

Abstract Poly(lactic acid) (PLA)/poly(butylene adipate-co-terephthalate) (PBAT)-based nanocomposites filled with 1 vol.% silicon dioxide nanoparticles (nano-SiO2) were prepared using a co-rotating twin-screw extruder and injection molding. The nanocomposites with various blending sequences were investigated using PLA-based and PBAT-based nanocomposite masterbatches. Morphology of the PLA/PBAT/SiO2 nanocomposites was examined using a scanning electron microscope (SEM) and a focused ion beam (FIB) SEM. It is found that the nano-SiO2 locates in the original polymer phase, in which it is firstly incorporated in the masterbatch process, as well as at the interface between the two polymers. However, as the residence time in the extrusion process increases, the nanoparticles migrate from the original phase to the interface, governed by the thermodynamic driving force. The best optimization of mechanical properties is achieved by using the PBAT-based masterbatches with a one-step process or short residence time. The processing history, therefore, has a tremendous impact on the final properties of the resulting materials.


Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2621 ◽  
Author(s):  
Hai Chi ◽  
Wenhui Li ◽  
Chunli Fan ◽  
Cheng Zhang ◽  
Lin Li ◽  
...  

The microstructure, thermal properties, mechanical properties and oxygen and water vapor barrier properties of a poly(lactic acid) (PLA)/nano-TiO2 composite film before and after high pressure treatment were studied. Structural analysis showed that the functional group structure of the high pressure treated composite film did not change. It was found that the high pressure treatment did not form new chemical bonds between the nanoparticles and the PLA. The micro-section of the composite film after high pressure treatment became very rough, and the structure was depressed. Through the analysis of thermal and mechanical properties, high pressure treatment can not only increase the strength and stiffness of the composite film, but also increase the crystallinity of the composite film. Through the analysis of barrier properties, it is found that the barrier properties of composite films after high pressure treatment were been improved by the applied high pressure treatment.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7295
Author(s):  
Hom Nath Dhakal ◽  
Chulin Jiang ◽  
Moumita Sit ◽  
Zhongyi Zhang ◽  
Moussa Khalfallah ◽  
...  

The aim of this study was to evaluate the moisture absorption behaviour and its influence on the mechanical properties of newly developed sandwich biocomposites with flax fibre-reinforced poly-lactic acid (PLA) face sheets and soft cork as the core material. Three different types of sandwich biocomposite laminates comprised of different layup configurations, namely, non-woven flax/PLA (Sample A), non-woven flax/PLA and cork as core (Sample B) and non-woven flax/paper backing/PLA, cork as core (Sample C), were fabricated. In order to evaluate the influence of moisture ingress on the mechanical properties, the biocomposites were immersed in seawater for a period of 1200 h. The biocomposites (both dry and water immersed) were then subjected to tensile, flexural and low-velocity falling weight impact tests. It was observed from the experimental results that the moisture uptake significantly influenced the mechanical properties of the biocomposites. The presence of the cork and paper in sample C made it more susceptible to water absorption, reaching a value of 34.33%. The presence of cork in the core also has a considerable effect on the mechanical, as well as energy dissipation, behaviours. The results of sample A exhibited improved mechanical performance in both dry and wet conditions compared to samples B and C. Sample A exhibits 32.6% more tensile strength and 81.4% more flexural strength in dry conditions than that in sample C. The scanning electron microscopy (SEM) and X-ray micro-CT images revealed that the failure modes observed are a combination of matrix cracking, core crushing and face core debonding. The results from this study suggest that flax/PLA sandwich biocomposites can be used in various lightweight applications with improved environmental benefits.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3193
Author(s):  
Sylva Holešová ◽  
Karla Čech Čech Barabaszová ◽  
Marianna Hundáková ◽  
Michaela Ščuková ◽  
Kamila Hrabovská ◽  
...  

Infection with pathogenic microorganisms is of great concern in many areas, especially in healthcare, but also in food packaging and storage, or in water purification systems. Antimicrobial polymer nanocomposites have gained great popularity in these areas. Therefore, this study focused on new approaches to develop thin antimicrobial films based on biodegradable polycaprolactone (PCL) with clay mineral natural vermiculite as a carrier for antimicrobial compounds, where the active organic antimicrobial component is antifungal ciclopirox olamine (CPX). For possible synergistic effects, a sample in combination with the inorganic antimicrobial active ingredient zinc oxide was also prepared. The structures of all the prepared samples were studied by X-ray diffraction, FTIR analysis and, predominantly, by SEM. The very different structure properties of the prepared nanofillers had a fundamental influence on the final structural arrangement of thin PCL nanocomposite films as well as on their mechanical, thermal, and surface properties. As sample PCL/ZnOVER_CPX possessed the best results for antimicrobial activity against examined microbial strains, the synergic effect of CPX and ZnO combination on antimicrobial activity was proved, but on the other hand, its mechanical resistance was the lowest.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Chaitra Venkatesh ◽  
Yuanyuan Chen ◽  
Zhi Cao ◽  
Shane Brennan ◽  
Ian Major ◽  
...  

Abstract Poly (lactic acid)/halloysite nanotube (PLA/HNT) nanocomposites have been studied extensively over the past few years owing to the interesting properties of the polymer, PLA, and the nanoclay, HNT, individually and as composites. In this paper, the influence of the screw speed during extrusion was investigated and was found to have a significant impact on the mechanical and thermal performance of the extruded PLA/HNT nanocomposites. To determine the effect of screw speed on PLA/HNT nanocomposites, 5 and 10 wt% of HNTs were blended into the PLA matrix through compounding at screw speeds of 40, 80, and 140 rpm. Virgin PLA was compounded for comparison. The resultant polymer melt was quench cooled onto a calendar system to produce composite films which were assessed for mechanical, thermal, chemical, and surface properties. Results illustrate that in comparison to 40 and 80 rpm, the virgin PLA when compounded at 140 rpm, indicated a significant increase in the mechanical properties. The PLA/HNT 5 wt% nanocomposite compounded at 140 rpm showed significant improvement in the dispersion of HNTs in the PLA matrix which in turn enhanced the mechanical and thermal properties. This can be attributed to the increased melt shear at higher screw speeds.


Sign in / Sign up

Export Citation Format

Share Document