scholarly journals Histochemical and Phytochemical Analysis of Lamium album subsp. album L. Corolla: Essential Oil, Triterpenes, and Iridoids

Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4166
Author(s):  
Agata Konarska ◽  
Elżbieta Weryszko-Chmielewska ◽  
Anna Matysik-Woźniak ◽  
Aneta Sulborska ◽  
Beata Polak ◽  
...  

The aim of this study was to conduct a histochemical analysis to localize lipids, terpenes, essential oil, and iridoids in the trichomes of the L. album subsp. album corolla. Morphometric examinations of individual trichome types were performed. Light and scanning electron microscopy techniques were used to show the micromorphology and localization of lipophilic compounds and iridoids in secretory trichomes with the use of histochemical tests. Additionally, the content of essential oil and its components were determined using gas chromatography-mass spectrometry (GC-MS). Qualitative analyses of triterpenes carried out using high-performance thin-layer chromatography (HPTLC) coupled with densitometric detection, and the iridoid content expressed as aucubin was examined with spectrophotometric techniques. We showed the presence of iridoids and different lipophilic compounds in papillae and glandular and non-glandular trichomes. On average, the flowers of L. album subsp. album yielded 0.04 mL/kg of essential oil, which was dominated by aldehydes, sesquiterpenes, and alkanes. The extract of the L. album subsp. album corolla contained 1.5 × 10−3 ± 4.3 × 10−4 mg/mL of iridoid aucubin and three triterpenes: oleanolic acid, β-amyrin, and β-amyrin acetate. Aucubin and β-amyrin acetate were detected for the first time. We suggest the use of L. album subsp. album flowers as supplements in human nutrition.

Author(s):  
Mariya Shanaida ◽  
Iryna Ivanusa ◽  
Ivanna Kernychna

<p><strong>Objective: </strong>The present study was designated to analyse the essential oils and tannins as important secondary metabolites of the aerial part of <em>Satureja hortensis</em>.</p><p><strong>Methods: </strong>The chemical composition of <em>S</em><em>. </em><em>hortensis</em> herb was investigated using high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS). The essential oil was obtained by hydrodistillation method.</p><p><strong>Results: </strong>The essential oil yield in the aerial part of<em> </em><em>S</em><em>. </em><em>hortensis</em><strong> </strong>was 1.61%. GC-MS analysis of the essential oils identified the presence of 29 components. Carvacrol (76.16%), as the main component of essential oils, belongs to the group of aromatic compounds. Eight tannin components identified by HPLC and epigallocatechin (130.91х10<sup>-2</sup>%) are prevalent among them.</p><p><strong>Conclusion</strong>:<strong> </strong><em>S. hortensis</em> was found to possess considerable amount of phytoconstituents such as essential oils and tannins. The results of this research will help to study pharmacological properties of the investigated plant and to prevent possible adulteration with other plants.</p>


Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 546 ◽  
Author(s):  
Truong Minh ◽  
Tran Xuan ◽  
Truong Van ◽  
Yusuf Andriana ◽  
Tran Viet ◽  
...  

Although many investigations on phytochemicals in rice plant parts and root exudates have been conducted, information on the chemical profile of essential oil (EO) and potent biological activities has been limited. In this study, chemical compositions of rice leaf EO and in vitro biological activities were investigated. From 1.5 kg of fresh rice leaves, an amount of 20 mg EO was obtained by distillation and analyzed by gas chromatography-mass spectrometry (GC-MS), electrospray ionization (ESI), and atmospheric pressure chemical ionization (APCI) to reveal the presence of twelve volatile constituents, of which methyl ricinoleate (27.86%) was the principal compound, followed by palmitic acid (17.34%), and linolenic acid (11.16%), while 2-pentadecanone was the least (2.13%). Two phytoalexin momilactones A and B were first time identified in EO using ultra-performance liquid chromatography coupled with electrospray mass spectrometry (UPLC/ESI-MS) (9.80 and 4.93 ng/g fresh weight, respectively), which accounted for 7.35% and 3.70% of the EO, respectively. The assays of DPPH (IC50 = 73.1 µg/mL), ABTS (IC50 = 198.3 µg/mL), FRAP (IC50 = 700.8 µg/mL) and β-carotene oxidation (LPI = 79%) revealed that EO possessed an excellent antioxidant activity. The xanthine oxidase assay indicated that the anti-hyperuricemia potential was in a moderate level (IC50 = 526 µg/mL) as compared with the standard allopurinol. The EO exerted potent inhibition on growth of Raphanus sativus, Lactuca sativa, and two noxious weeds Echinochloa crus-galli, and Bidens pilosa, but in contrast, the growth of rice seedlings was promoted. Among the examined plants, the growth of the E. crus-galli root was the most inhibited, proposing that constituents found in EO may have potential for the control of the problematic paddy weed E. crus-galli. It was found that the EO of rice leaves contained rich phytochemicals, which were potent in antioxidants and gout treatment, as well as weed management. Findings of this study highlighted the potential value of rice leaves, which may provide extra benefits for rice farmers.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2949
Author(s):  
Juan I. Burneo ◽  
Ángel Benítez ◽  
James Calva ◽  
Pablo Velastegui ◽  
Vladimir Morocho

Chemical compositions of plants are affected by the initial nutrient contents in the soil and climatic conditions; thus, we analyzed for the first time the effects of soil and leaf nutrients on the compositions of the essential oils (EOs) of Siparuna muricata in four different localities in Ecuador. EOs were obtained by hydrodistillation and analyzed by gas chromatography/mass spectrometry (GC/MS) and a gas chromatography/flame ionization detector (GC/FID). Enantiomeric distribution by GC/MS was determined, modifying the enantiomeric separation of β-pinene, limonene, δ-elemene, β-bourbonene, cis-cadina-1 (6), 4-diene and atractylone. A total of 44 compounds were identified. The most representative for L1 were guaiol, atractylone and 4-diene; for L2, cis-cadina-1(6),4-diene and myrcene; for L3, atractylone, myrcene and germacrene B; and finally, L4 germacrene B, myrcene and cis-cadina-1(6),4-diene. Correlations between soil- leaf chemical elements such as Al, Ca, Fe, Mg, Mn, N and Si in the different localities were significant with chemical composition of the essential oil of Siparuna muricata; however, correlations between soil and leaf K, P, and Na were not significant. Cluster and NMDS analysis showed high dissimilarity values of secondary metabolites between four localities related with changes in soil- leaf nutrients. Thus, the SIMPER routine revealed that not all secondary metabolites contribute equally to establishing the differences in the four localities, and the largest contributions are due to differences in guaiol, cis-cadina-1(6),4-diene, atractylone and germacrene. Our investigation showed for the first time the influences of altitude and soil- leaf chemical elements in the chemical composition of the EOs of S. muricata.


2012 ◽  
Vol 40 (1) ◽  
pp. 35 ◽  
Author(s):  
Hüseyin CILDIR ◽  
Ahmet KAHRAMAN ◽  
Musa DOGAN

In this study, the epidermal types and their distribution on dorsal and lateral petals, the trichome types and their density on sepals of Lathyrus chloranthus, L. digitatus, L. laxiflorus subsp. laxiflorus, L. roseus subsp. roseus, L. sativus, and L. tuberosus, belonging to sections Lathyrus, Lathyrostylis, Pratensis, and Orobon of the genus Lathyrus in Turkey were investigated using light microscopy (LM) and scanning electron microscopy (SEM), and the systematic significance of these characters was evaluated. These taxa, except L. sativus, are studied for the first time under aspects of the petal and sepal micromorphology. Three major epidermal types were recognized on the petal: tabular rugose striate cells (TRS), areolate cells with more or less striations (AS), and papillose conical striate cells (PCS). TRS and AS were further subdivided into three subtypes. TRS was found on the dorsal and lateral petals of L. chloranthus, L. sativus, and L. tuberosus: the dorsal petals of L. roseus subsp. roseus and the lateral petals of L. laxiflorus subsp. laxiflorus, while AS was present on the dorsal and lateral petals of L. digitatus and the lateral petals of L. roseus subsp. roseus. PCS was found only on the dorsal petals of L. digitatus. Three main types of trichomes on the sepal were observed: peltate glandular, capitate glandular, and nonglandular trichomes. The capitate glandular and nonglandular trichomes were further subdivided into three subtypes. The peltate glandular trichomes were present only in L. chloranthus, but absent in the others. The capitate glandular trichomes were found in L. chloranthus, L. laxiflorus subsp. laxiflorus, L. roseus subsp. roseus, and L. tuberosus. The nonglandular trichomes were always present in L. chloranthus and L. laxiflorus subsp. laxiflorus. The present results show that the petal and sepal micromorphology can be used in delimitation of the taxa based on petal and sepal micromorphology.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Valtcho D. Zheljazkov ◽  
Filippo Maggi

AbstractHemp (Cannabis sativa L.) synthesizes and accumulates a number of secondary metabolites such as terpenes and cannabinoids. They are mostly deposited as resin into the glandular trichomes occurring on the leaves and, to a major extent, on the flower bracts. In the last few years, hemp for production of high-value chemicals became a major commodity in the U.S. and across the world. The hypothesis was that hemp biomass valorization can be achieved through distillation and procurement of two high-value products: the essential oil (EO) and cannabinoids. Furthermore, the secondary hypothesis was that the distillation process will decarboxylate cannabinoids hence improving cannabinoid composition of extracted hemp biomass. Therefore, this study elucidated the effect of steam distillation on changes in the content and compositional profile of cannabinoids in the extracted biomass. Certified organic CBD-hemp strains (chemovars, varieties) Red Bordeaux, Cherry Wine and Umpqua (flowers and some upper leaves) and a T&H strain that included chopped whole-plant biomass, were subjected to steam distillation, and the EO and cannabinoids profile were analyzed by gas chromatography-mass spectrometry (GC–MS) and HPLC, respectively. The distillation of hemp resulted in apparent decarboxylation and conversion of cannabinoids in the distilled biomass. The study demonstrated a simple method for valorization of CBD-hemp through the production of two high-value chemicals, i.e. EO and cannabinoids with improved profile through the conversion of cannabidiolic acid (CBD-A) into cannabidiol (CBD), cannabichromenic acid (CBC-A) into cannabichromene (CBC), cannabidivarinic acid (CBDV-A) into cannabidivarin (CBDV), cannabigerolic acid (CBG-A) into cannabigerol (CBG), and δ-9-tetrahydrocannabinolic acid (THC-A) into δ-9-tetrahydrocannabinol (THC). In addition, the distilled biomass contained CBN while the non-distilled did not. Distillation improved the cannabinoids profile; e.g. the distilled hemp biomass had 3.4 times higher CBD in variety Red Bordeaux, 5.6 times in Cherry Wine, 9 times in variety Umpqua, and 6 times in T&H compared to the original non-distilled samples, respectively. Most of the cannabinoids remained in the distilled biomass and small amounts of CBD were transferred to the EO. The CBD concentration in the EO was as follows: 5.3% in the EO of Umpqua, 0.15% in the EO of Cherry Wine and Red Bordeaux and 0.06% in the EO of T&H. The main 3 EO constituents were similar but in different ratio; myrcene (23.2%), (E)-caryophyllene (16.7%) and selina-3,7(11)-diene (9.6%) in Cherry Wine; (E)-caryophyllene (~ 20%), myrcene (16.6%), selina-3,7(11)-diene (9.6%), α-humulene (8.0%) in Red Bordeaux; (E)-caryophyllene (18.2%) guaiol (7.0%), 10-epi-γ-eudesmol (6.9%) in Umpqua; and (E)-caryophyllene (30.5%), α-humulene (9.1%), and (E)-α-bisabolene (6.5%) in T&H. In addition, distillation reduced total THC in the distilled biomass. Scanning electron microscopy (SEM) analyses revealed that most of the glandular trichomes in the distilled biomass were not disturbed (remained intact); that suggest a possibility for terpenes evaporation through the epidermal membrane covering the glandular trichomes leaving the cannabinoids in the trichomes. This explained the fact that distillation resulted in terpene extraction while the cannabinoids remained in the distilled material.


2009 ◽  
Vol 4 (6) ◽  
pp. 1934578X0900400 ◽  
Author(s):  
Claudia Giuliani ◽  
Roberto Maria Pellegrino ◽  
Bruno Tirillini ◽  
Laura Maleci Bini

The essential oils from both leaves (L) and flowers (F) of Stachys germanica subsp. salviifolia (Ten.) Gams (Labiatae/Lamiaceae) from Italy were analyzed by GC-MS for the first time. The distribution, morphology and histochemistry of the different types of glandular trichomes present on the epidermal surface were also determined. Twenty-nine constituents, representing 89.4% of the total leaf oil, and forty-one compounds, forming 97.8% of the total flower oil, were identified. Germacrene D (39.4%), phytol (10.2%), β-bourbonene (3.5%) and β-ylangene (3.3%) were recognized as the main constituents of the leaf essential oil, while limonene (24.1%), β-pinene (18.7%), germacrene D (12.8%) and ( E)-nerolidol (6.6%) were the main compounds of the flower essential oil.


Plants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 646 ◽  
Author(s):  
Majid Sharifi-Rad ◽  
Francesco Epifano ◽  
Serena Fiorito ◽  
José M. Álvarez-Suarez

This study was carried out to screen the amount and the classes of secondary metabolites and to evaluate the antioxidant, cytotoxic, antifungal, and antibacterial activities of the methanolic, ethanolic, and water extracts of the roots, leaves, and flowers of Nepeta juncea Benth. The results show that the highest total phenol (69.54 ± 0.31 mg gallic acid equivalents (GAE)/g dry weight), total flavonoid (41.37 ± 0.17 mg quercetin equivalents (QE)/g dry weight), anthocyanin (6.52 ± 0.21 mg cyanidin/100 g dry weight), and tannin (47.36 ± 0.33 mg catechin/g dry weight) concentrations were recorded in the methanolic extract of the leaves of N. juncea. The gas chromatography–mass spectrometry (GC–MS) analysis of the extracts showed that 1,8-cineole, 4aα-7α-7aα-nepetalactone, β-pinene, terpinen-4-ol, and α-terpineol were the major compounds, respectively. The best 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and ferric-reducing antioxidant, cytotoxic, antifungal, and antibacterial activities were observed for the methanolic extract of the leaves. For the two latter activities, the best activity was revealed on Staphylococcus aureus, Bacillus cereus, and Candida albicans. The minimum inhibitory concentration (MIC) values for the antimicrobial of the methanolic extract from the leaves were in the range of 25–100 µg/mL, whereas the minimum bactericidal concentration (MBC) values were in the range of 50–200 µg/mL. The results reported herein show that, for the first time in the literature, N. juncea is a remarkable source of antioxidant, antifungal, and antibacterial compounds.


2014 ◽  
Vol 4 (1) ◽  
pp. 51 ◽  
Author(s):  
Vania Maria Moreira Valente ◽  
Gulab Newandram Jham ◽  
Carolina Marangon Jardim ◽  
Onkar Dev Dhingra ◽  
Ion Ghiviriga

<p>Aiming to substitute toxic synthetic fungicides, the activity of nutmeg (<em>Myristica fragrans</em>) essential oil (EO, obtained by hydrodistillation) was investigated against two important storage fungi-<em>Aspergillus flavus</em> <em>A. ochraceus</em>. The activity of crude nutmeg EO was investigated using poison food assay (PFA). At a concentration of 0.1%, the EO inhibited <em>A. flavus</em> and <em>A. ochraceus</em> growth by 43 and 65%, respectively. At a concentration of 0.3 %, <em>A. flavus</em> and <em>A. ochraceus</em> inhibitions were 84 and 79%, respectively. The crude nutmeg EO on fractionation by preparative TLC-bioautography presented one band from which two pure compounds were isolated by semi-preparative normal-phase high performance liquid chromatography. Myristicin and safrole were identified by nuclear magnetic resonance (<sup>1</sup>H and <sup>13</sup>C) and gas chromatography-mass spectrometry. The relative % of myristicin and safrol in the crude EO was 10.8 and 2.9, respectively, determined by gas chromatography with a flame ionization detector. The crude EO, the isolated active fraction, isolated myristicin and standard myristicin presented similar activities against the two fungi at concentrations of 0.1 and 0.3% by PFA. Based on these results it is concluded that myristicin is the major antifungal in nutmeg EO against <em>A. flavus</em> and <em>A. ochraceus</em>.</p>


Author(s):  
Odunayo Atewolara-odule ◽  
Oseyemi Olubomehin ◽  
Enitan Adesanya ◽  
Adejumoke Hashimi ◽  
Abdulrazaq Ogunmoye

Essential oil is a hydrophobic concentrated liquid which contains volatile aroma compounds from plants. Bambusa vulgaris grows widely in the tropical and subtropical regions and has been reported to have different ethnomedicinal values such as antimalaria and antioxidant. It is also known to be an ornamental plant. The essential oil was extracted from both the fresh and dried leaves of Bambusa vulgaris by hydrodistillation method using a Clevenger apparatus. The chemical constituents of the essential oils were characterized using gas chromatography and gas chromatography-mass spectrometry. The essential oils obtained are colourless with an herbal odour giving a yield of 0.64 w/w for the fresh sample and 1.08 w/w for the dried sample. A total of thirty-nine (39) compounds were identified from the essential oils of both samples. The major constituents in the fresh leaves were 3-aminodibenzofuran (19.2%), ?-ocimene (11.1%), undecane (9.6%), tridecane (8.6%), [3,2-b] pyridin-6-octahydropyrano (7.1%), 2-mono laurin (6.9%) and vinyl decanoate (5.9%). Prominent compounds of the essential oil in the dried leaves were chlorophenoxymethylenimino sulfur pentafluoride (74.5%) and 2,2,6,6-tetramethyl-3,5-heptanedione (17.3%). Undecane, tridecane, hexadecane and octadecane were found both in the fresh and dried leaves. The chemical constituents of the essential oils from Nigeria Bambusa vulgaris were reported in this study for the first time to the best our knowledge and this could be useful in aromatherapy.


2021 ◽  
Vol 58 (6A) ◽  
pp. 280
Author(s):  
Hung Huy Nguyen ◽  
Dai Ngoc Do ◽  
Prabodh Satyal ◽  
Chung Thanh Nguyen ◽  
Nguyen Van Bui ◽  
...  

The essential oil from the leaves of Callicarpa arborea Roxb. growing wild in Vietnam, was obtained by hydrodistillation and analyzed by gas chromatography – mass spectrometry. The major constituents of leaves of C. arborea were β-selinene (23.9%), ar-turmerone (17.5%) and α-copaene (8.9%), with lesser concentrations of caryophyllene oxide (4.9%) and ar-turmerol (3.9%). The chemical composition of this essential oil sample is being reported for the first time.


Sign in / Sign up

Export Citation Format

Share Document