scholarly journals One-Step Extraction of Olive Phenols from Aqueous Solution Using β-Cyclodextrin in the Solid State, a Simple Eco-Friendly Method Providing Photochemical Stability to the Extracts

Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4463
Author(s):  
Aurélia Malapert ◽  
Emmanuelle Reboul ◽  
Olivier Dangles ◽  
Alain Thiéry ◽  
N’nabinty Sylla ◽  
...  

The extraction of phenolic compounds from olive mill wastes is important, not only to avoid environmental damages, but also because of the intrinsic value of those biophenols, well-known for their high antioxidant potential and health benefits. This study focuses on tyrosol (Tyr) and hydroxytyrosol (HT), two of the main phenolic compounds found in olive mill wastes. A new, simple, and eco-friendly extraction process for the removal of phenolic compounds from aqueous solutions using native β-cyclodextrin (β-CD) in the solid state has been developed. Several β-CD/biophenol molar ratios and biophenol concentrations were investigated, in order to maintain β-CD mostly in the solid state while optimizing the extraction yield and the loading capacity of the sorbent. The extraction efficiencies of Tyr and HT were up to 61%, with a total solid recovery higher than 90% using an initial concentration of 100 mM biophenol and 10 molar equivalents of β-CD. The photochemical stability of the complexes thus obtained was estimated from ∆E*ab curve vs. illumination time. The results obtained showed that the phenols encapsulated into solid β-CD are protected against photodegradation. The powder obtained could be directly developed as a safe-grade food supplement. This simple eco-friendly process could be used for extracting valuable biophenols from olive mill wastewater.

2013 ◽  
Vol 4 (3) ◽  
pp. 201-209 ◽  
Author(s):  
José Manuel Salgado ◽  
Luís Abrunhosa ◽  
Armando Venâncio ◽  
José Manuel Domínguez ◽  
Isabel Belo

Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5438
Author(s):  
África Fernández-Prior ◽  
Ángeles Trujillo-Reyes ◽  
Antonio Serrano ◽  
Guillermo Rodríguez-Gutiérrez ◽  
Claudio Reinhard ◽  
...  

The olive oil production is an important industrial sector in many Mediterranean areas, but it is currently struggled by the necessity of a proper valorisation of the olive mill solid waste or alperujo. The alperujo is the main by-product generated during the two-phase olive oil extraction, accounting for up to 80% of the initial olive mass. The alperujo is a source of valuable compounds, such as the pomace olive oil or highly interesting phenolic compounds. In the present research, a novel biorefinery approach has been used for phenolic compounds recovery. However, the extraction of these valuables compounds generates different exhausted phases with high organic matter content that are required to be managed. This study consists of the evaluation of the anaerobic biodegradability of the different fractions obtained in a novel biorefinery approach for the integral valorisation of alperujo. The results show that the different phases obtained during the biorefinery of the alperujo can be effectively subjected to anaerobic digestion and no inhibition processes were detected. The highest methane yield coefficients were obtained for the phases obtained after a two-months storages, i.e., suspended solids and liquid phase free of suspended solids, which generated 366 ± 7 mL CH4/g VS and 358 ± 6 mL CH4/g VS, respectively. The phenol extraction process reduced the methane yield coefficient around 25% due to the retention of biodegradable compounds during the extraction process. Regardless of this drop, the anaerobic digestion is a suitable technology for the stabilization of the different generated residual phases, whereas the high market price of the extracted phenols can largely compensate the slight decrease in the methane generation.


2022 ◽  
Vol 8 ◽  
Author(s):  
Cinzia Benincasa ◽  
Massimiliano Pellegrino ◽  
Elvira Romano ◽  
Salvatore Claps ◽  
Carmelo Fallara ◽  
...  

The processing of olives for oil production generates the most abundant agro-industrial by-products in the Mediterranean area. The three-phase olive oil extraction process requires the addition of a large amount of water to the system, which is difficult to dispose of for its load of toxic pollutants. On the other hand, olive mill wastewater is a rich source of bioactive substances with various biological properties that can be used as ingredients in the food industry for obtaining functional and nutraceutical foods as well as in the pharmaceutical industry. In this study, we present the results relative to the phenolic compounds detected in dried olive mill wastewaters obtained using a spray dryer. Qualitative and quantitative analyses were obtained by high-pressure liquid chromatography–tandem mass spectrometry (HPLC–MS/MS). In particular, the compounds here discussed are: apigenin (9.55 mg/kg dry weight), caffeic acid (2.89 mg/kg dry weight), catecol (6.12 mg/kg dry weight), p-cumaric acid (5.01 mg/kg dry weight), diosmetin (3.58 mg/kg dry weight), hydroxytyrosol (1.481 mg/kg dry weight), hydroxytyrosyl oleate (564 mg/kg dry weight), luteolin (62.38 mg/kg dry weight), luteolin-7-O-glucoside (88.55 mg/kg dry weight), luteolin-4-O-glucoside (11.48 mg/kg dry weight), oleuropein (103 mg/kg dry weight), rutin (48.52 mg/kg dry weight), tyrosol (2043 mg/kg dry weight), vanillin (27.70 mg/kg dry weight), and verbascoside (700 mg/kg dry weight). The results obtained highlighted that the use of dehumidified air as a drying medium, with the addition of maltodextrin, appears to be an effective way to produce a phenol-rich powder to be included in food formulations as well as in pharmaceutical preparations having different biological properties.


2021 ◽  
Vol 49 (1) ◽  
pp. 12125
Author(s):  
Hanen ZAIER ◽  
Sameh MAKTOUF ◽  
Sevastianos ROUSSOS ◽  
Ali RHOUMA

Olive mill wastewaters and olive cake are effluents generated during olive oil production process. They represent a major disposal and potentially severe pollution problem for the industry, also promising source of substances of high value. The aim of this study is the valorization of olive mill wastes (OMWW, olive cake, olive twigs and leaves) to produce enzymes with high industrial and biotechnological potential, by the solid-state fermentation technique (SSF), from isolated fungi present in olive mill wastewater and olive cake. A total of 47 strains were isolated and purified from these two residues. The metabolic potential of isolated strains was study by testing the hydrolytic enzymes activities of lipase, protease, amylase, cellulase, invertase, phytase and tannase on agar plate media containing different substrate. The monitoring of SSF has shown that the metabolic activity of these strains is extremely rapid using this technique. Our fungi collection contains a diversity of strains capable to producing a variety of enzymes of biotechnological interest.


2015 ◽  
Vol 45 (2) ◽  
pp. 200-211 ◽  
Author(s):  
Mariana Araújo ◽  
Filipa B. Pimentel ◽  
Rita C. Alves ◽  
M. Beatriz P.P. Oliveira

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5790
Author(s):  
M. Mercè Solé ◽  
Laia Pons ◽  
Mireia Conde ◽  
Carmen Gaidau ◽  
Anna Bacardit

Olive mill wastes represent an important environmental problem. Their high phenol, lipid, and organic acid concentrations turn them into phytotoxic materials. Specifically, wet olive pomace (WOP) is the waste generated in the two-phase continuous extraction process. WOP is a paste with around 60% water. The total volume of WOP generated is around 0.25 L/kg of olives processed. Its current waste management practices result in environmental problems as soil contamination, underground seepage, water-bodies pollution, and foul odor emissions. Some valorization alternatives include composting, biological treatments, direct combustion for energy production, or direct land application. The leather industry is making great efforts to apply cleaner processes while substituting chemical products for natural products. In this way, different alternatives are being studied, such as the use of zeolites, triazine derivatives, grape seed extract, olive leaf extract, etc. In this work, the use of wet olive pomace is presented as a possible alternative to conventional vegetable tannins (mimosa, quebracho, chestnut, etc.). Although different projects and studies have been developed for the valorization of olive mill wastes, there is completely a new approach to the WOP application for tanning purposes. This study shows that WOP has a significant number of polyphenolic substances, so it has a great potential to be used as a tanning agent. Specifically, this study has been able to determine that, of the polyphenols present in WOP, 39.6% correspond to tannins that are capable of tanning the skin. Additionally, it contains 14.3% non-tannins, that is, molecules that by themselves do not have the capacity to tan the leather but promote the tanning mechanism and improve the properties of the tanned leather.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 417
Author(s):  
Maria Pérez ◽  
Anallely López-Yerena ◽  
Julián Lozano-Castellón ◽  
Alexandra Olmo-Cunillera ◽  
Rosa M. Lamuela-Raventós ◽  
...  

There is a growing consumer preference for high quality extra virgin olive oil (EVOO) with health-promoting and sensory properties that are associated with a higher content of phenolic and volatile compounds. To meet this demand, several novel and emerging technologies are being under study to be applied in EVOO production. This review provides an update of the effect of emerging technologies (pulsed electric fields, high pressure, ultrasound, and microwave treatment), compared to traditional EVOO extraction, on yield, quality, and/or content of some minor compounds and bioactive components, including phenolic compounds, tocopherols, chlorophyll, and carotenoids. In addition, the consumer acceptability of EVOO is discussed. Finally, the application of these emerging technologies in the valorization of olive mill wastes, whose generation is of concern due to its environmental impact, is also addressed.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 843
Author(s):  
Rosa E. A. Nascimento ◽  
Joana Monte ◽  
Mafalda Cadima ◽  
Vítor D. Alves ◽  
Luísa A. Neves

This study seeks to render residues from banana plants into a useful byproduct with possible applications in wound dressings and food packaging. Films based on cellulose extracted from banana plant pseudostem and doped with phenolic compounds extracted from banana plant leaves were developed. The phenolic compounds were extracted using batch solid-liquid and Soxhlet methods, with different drying temperatures and periods of time. The total phenolic content and antioxidant activity were quantified. The optimum values were obtained using a three-day period batch-solid extraction at 40 °C (791.74 ± 43.75 mg/L). SEM analysis indicates that the pseudostem (PS) films have a porous structure, as opposed to hydroxyethyl cellulose (HEC) films which presented a homogeneous and dense surface. Mechanical properties confirmed the poor robustness of PS films. By contrast HEC films manifested improved tensile strength at low levels of water activity. FTIR spectroscopy reinforced the need to improve the cellulose extraction process, the success of lignin and hemicellulose removal, and the presence of phenolic compounds. XRD, TGA and contact angle analysis showed similar results for both films, with an amorphous structure, thermal stability and hydrophilic behavior.


Sign in / Sign up

Export Citation Format

Share Document