scholarly journals Qualitative and Quantitative Analysis of Phenolic Compounds in Spray-Dried Olive Mill Wastewater

2022 ◽  
Vol 8 ◽  
Author(s):  
Cinzia Benincasa ◽  
Massimiliano Pellegrino ◽  
Elvira Romano ◽  
Salvatore Claps ◽  
Carmelo Fallara ◽  
...  

The processing of olives for oil production generates the most abundant agro-industrial by-products in the Mediterranean area. The three-phase olive oil extraction process requires the addition of a large amount of water to the system, which is difficult to dispose of for its load of toxic pollutants. On the other hand, olive mill wastewater is a rich source of bioactive substances with various biological properties that can be used as ingredients in the food industry for obtaining functional and nutraceutical foods as well as in the pharmaceutical industry. In this study, we present the results relative to the phenolic compounds detected in dried olive mill wastewaters obtained using a spray dryer. Qualitative and quantitative analyses were obtained by high-pressure liquid chromatography–tandem mass spectrometry (HPLC–MS/MS). In particular, the compounds here discussed are: apigenin (9.55 mg/kg dry weight), caffeic acid (2.89 mg/kg dry weight), catecol (6.12 mg/kg dry weight), p-cumaric acid (5.01 mg/kg dry weight), diosmetin (3.58 mg/kg dry weight), hydroxytyrosol (1.481 mg/kg dry weight), hydroxytyrosyl oleate (564 mg/kg dry weight), luteolin (62.38 mg/kg dry weight), luteolin-7-O-glucoside (88.55 mg/kg dry weight), luteolin-4-O-glucoside (11.48 mg/kg dry weight), oleuropein (103 mg/kg dry weight), rutin (48.52 mg/kg dry weight), tyrosol (2043 mg/kg dry weight), vanillin (27.70 mg/kg dry weight), and verbascoside (700 mg/kg dry weight). The results obtained highlighted that the use of dehumidified air as a drying medium, with the addition of maltodextrin, appears to be an effective way to produce a phenol-rich powder to be included in food formulations as well as in pharmaceutical preparations having different biological properties.

Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 780
Author(s):  
Markus Peter Kurtz ◽  
Arnon Dag ◽  
Isaac Zipori ◽  
Yael Laor ◽  
Christian Buchmann ◽  
...  

The controlled application of olive mill wastewater (OMW) as a by-product of the olive oil extraction process is widespread in olive oil-producing countries. Therefore, a sustainable approach necessarily targets the positive effects of soil resilience between successive annual applications to exclude possible accumulations of negative consequences. To investigate this, we applied 50, 100, 100 with tillage and 150 m3 OMW ha−1 y−1 for five consecutive seasons to an olive orchard in a semi-arid region and monitored various soil physicochemical and biological properties. OMW increased soil water content with concentration of total phenols, cations, and anions as well as various biological and soil organic matter indices. Soil hydrophobicity, as measured by water drop penetration time (WDPT), was found to be predominantly in the uppermost layer (0–3 and 3–10 cm). OMW positively affected soil biology, increased the activity and abundance of soil arthropods, and served as a food source for bacteria and fungi. Subsequent shallow tillage reduced the extent of OMW-induced changes and could provide a simple means of OMW dilution and effect minimization. Despite potentially higher leaching risks, an OMW dose of 50–100 m3 ha−1 applied every two years followed by tillage could be a cost-effective and feasible strategy for OMW recycling.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1808
Author(s):  
Rosa Tundis ◽  
Carmela Conidi ◽  
Monica R. Loizzo ◽  
Vincenzo Sicari ◽  
Rosa Romeo ◽  
...  

Olive mill wastewater (OMW), generated as a by-product of olive oil production, is considered one of the most polluting effluents produced by the agro-food industry, due to its high concentration of organic matter and nutrients. However, OMW is rich in several polyphenols, representing compounds with remarkable biological properties. This study aimed to analyze the chemical profile as well as the antioxidant and anti-obesity properties of concentrated fractions obtained from microfiltered OMW treated by direct contact membrane distillation (DCMD). Ultra-high performance liquid chromatography (UHPLC) analyses were applied to quantify some phenols selected as phytochemical markers. Moreover, α-Amylase, α-glucosidase, and lipase inhibitory activity were investigated together with the antioxidant activity by means of assays, namely β-carotene bleaching, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic) acid (ABTS) diammonium salts, 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, and Ferric Reducing Activity Power (FRAP) tests. MD retentate—which has content of about five times greater of hydroxytyrosol and verbascoside and about 7 times greater of oleuropein than the feed—was more active as an antioxidant in all applied assays. Of interest is the result obtained in the DPPH test (an inhibitory concentration 50% (IC50) of 9.8 μg/mL in comparison to the feed (IC50 of 97.2 μg/mL)) and in the ABTS assay (an IC50 of 0.4 μg/mL in comparison to the feed (IC50 of 1.2 μg/mL)).


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Magdalena Woźniak ◽  
Anna Kwiatkowska ◽  
Elżbieta Hołderna-Kędzia ◽  
Katarzyna Sosnowska ◽  
Lucyna Mrówczyńska ◽  
...  

Introduction. Propolis, also known as bee glue, is a resinous material collected by honeybees with numerous biological properties, including antibacterial, antifungal, antioxidant and anticancer effects. Due to its health-promoting properties, propolis is a component of many products, including dietary supplements, cosmetics and healthy food. Aim. The aim of the study was to determine the antibacterial, antifungal and antioxidant activity of propolis extracts, as well as to compare the biological activity of propolis extracts, depending on the solvent used – ethyl alcohol or propylene glycol. Material and methods. Two propolis extracts were used in the research – the first was prepared in ethyl alcohol, and the second in propylene glycol. The antimicrobial activity of the examined extracts was determined against S. aureus, E. coli and C. albicans. The antioxidant activity was determined on the basis of the evaluation of their antiradical activity in the DPPH· test and Fe2+ chelating activity. Moreover, the total content of phenolic compounds and flavonoids in the tested extracts was determined using the colorimetric method. Results. The tested propolis extracts, regardless of the solvent used (ethyl alcohol or propylene glycol), showed high antibacterial (against S. aureus), antifungal (against C. albicans) and antioxidant (antiradical activity in the DPPH· test and ferrous iron chelating potency in the ferrozine test) activity. Moreover, both tested extracts were characterized by a high and similar content of bioactive compounds – phenolic compounds and flavonoids. Conclusions. The results of the conducted tests showed that the solvent used did not affect determined biological activity and the content of bioactive substances in the tested propolis extracts.


Molecules ◽  
2019 ◽  
Vol 24 (4) ◽  
pp. 741 ◽  
Author(s):  
Ivica Blažević ◽  
Azra Đulović ◽  
Vedrana Čikeš Čulić ◽  
Franko Burčul ◽  
Ivica Ljubenkov ◽  
...  

Bunias erucago belongs to the Brassicaceae family, which represents a forgotten crop of the Euro-Mediterranean area. The aim of the present study was to determine the glucosinolate profile in different plant parts and biological properties (antioxidant, anticholinesterase, and cytotoxic activities) of the isolates containing glucosinolate breakdown products. The chemical profiles were determined by using HPLC-PDA-MS/MS of desulfoglucosinolates and GC-MS of glucosinolate degradation products. The analysis of B. erucago showed the presence of seven glucosinolates: gluconapin (1), glucoraphasatin (2), glucoraphenin (3), glucoerucin (4), glucoraphanin (5), glucotropaeolin (6), and glucosinalbin (7). The total glucosinolate content ranged from 7.0 to 14.6 µmol/g of dry weight, with the major glucosinolate glucosinalbin in all parts. The antioxidant activity of all volatile isolates was not notable. At a tested concentration of 227 μg/mL, flower hydro-distillate (FH) showed good AChE inhibition, i.e., 40.9%, while root hydro-distillate (RH) had good activity against BChE, i.e., 54.3%. FH showed the best activity against both tested human bladder cancer cell lines, i.e., against T24 after 72 h, which have IC50 of 16.0 μg/mL, and against TCCSUP after 48 h with IC50 of 7.8 μg/mL, and can be considered as highly active. On the other hand, RH showed weak activity against tested cancer cells.


Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5438
Author(s):  
África Fernández-Prior ◽  
Ángeles Trujillo-Reyes ◽  
Antonio Serrano ◽  
Guillermo Rodríguez-Gutiérrez ◽  
Claudio Reinhard ◽  
...  

The olive oil production is an important industrial sector in many Mediterranean areas, but it is currently struggled by the necessity of a proper valorisation of the olive mill solid waste or alperujo. The alperujo is the main by-product generated during the two-phase olive oil extraction, accounting for up to 80% of the initial olive mass. The alperujo is a source of valuable compounds, such as the pomace olive oil or highly interesting phenolic compounds. In the present research, a novel biorefinery approach has been used for phenolic compounds recovery. However, the extraction of these valuables compounds generates different exhausted phases with high organic matter content that are required to be managed. This study consists of the evaluation of the anaerobic biodegradability of the different fractions obtained in a novel biorefinery approach for the integral valorisation of alperujo. The results show that the different phases obtained during the biorefinery of the alperujo can be effectively subjected to anaerobic digestion and no inhibition processes were detected. The highest methane yield coefficients were obtained for the phases obtained after a two-months storages, i.e., suspended solids and liquid phase free of suspended solids, which generated 366 ± 7 mL CH4/g VS and 358 ± 6 mL CH4/g VS, respectively. The phenol extraction process reduced the methane yield coefficient around 25% due to the retention of biodegradable compounds during the extraction process. Regardless of this drop, the anaerobic digestion is a suitable technology for the stabilization of the different generated residual phases, whereas the high market price of the extracted phenols can largely compensate the slight decrease in the methane generation.


2010 ◽  
Vol 61 (4) ◽  
pp. 399-405 ◽  
Author(s):  
Tibela Dragičević ◽  
Marijana Hren ◽  
Margareta Gmajnić ◽  
Sanja Pelko ◽  
Dzoko Kungulovski ◽  
...  

Biodegradation of Olive Mill Wastewater by Trichosporon Cutaneum and Geotrichum CandidumOlive oil production generates large volumes of wastewater. These wastewaters are characterised by high chemical oxygen demand (COD), high content of microbial growth-inhibiting compounds such as phenolic compounds and tannins, and dark colour. The aim of this study was to investigate biodegradation of olive mill wastewater (OMW) by yeasts Trichosporon cutaneum and Geotrichum candidum. The yeast Trichosporon cutaneum was used because it has a high potential to biodegrade phenolic compounds and a wide range of toxic compounds. The yeast Geotrichum candidum was used to see how successful it is in biodegrading compounds that give the dark colour to the wastewater. Under aerobic conditions, Trichosporon cutaneum removed 88 % of COD and 64 % of phenolic compounds, while the dark colour remained. Geotrichum candidum grown in static conditions reduced COD and colour further by 77 % and 47 %, respectively. This investigation has shown that Trichosporon cutaneum under aerobic conditions and Geotrichum candidum under facultative anaerobic conditions could be used successfully in a two-step biodegradation process. Further investigation of OMW treatment by selected yeasts should contribute to better understanding of biodegradation and decolourisation and should include ecotoxicological evaluation of the treated OMW.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Saleh Abu-Lafi ◽  
Mahmoud Sami Al-Natsheh ◽  
Reem Yaghmoor ◽  
Fuad Al-Rimawi

The production of olive oil generates massive quantities of by-product called olive mill wastewater (OMWW). The uncontrolled disposal of OMWW poses serious environmental problems. The OMWW effluent is rich in several polyphenolic compounds. Liquid-liquid extraction of OMWW using ethyl acetate solvent was used to enrich phenolic compounds under investigation. Total phenolic and flavonoid content and antioxidant activity of the extract were determined. HPLC coupled to photodiode array (PDA) detector was used to analyze the main three phenolic compounds of OMWW, namely, hydroxytyrosol, tyrosol, and oleuropein. The antimicrobial activity of the extract was also investigated. Additionally, the OMWW extract was used as natural preservative and antioxidants for olive oil. Results showed that OMWW is very rich in phenolic compounds and has strong antioxidant activity. HPLC analysis showed that the extract contains mainly hydroxytyrosol and tyrosol but no oleuropein. The OMWW extract showed also positive activities as antibacterial (gram positive and gram negative) and antifungal as well as activities against yeast. The addition of OMWW extract to olive oil samples has an effect on the stability of olive oil as reflected by its acid value, peroxide value, K232 and K270, and total phenolic content.


Sign in / Sign up

Export Citation Format

Share Document