scholarly journals ROCK2-Specific Inhibitor KD025 Suppresses Adipocyte Differentiation by Inhibiting Casein Kinase 2

Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4747
Author(s):  
Nhu Nguyen Quynh Tran ◽  
Kwang-Hoon Chun

KD025, a ROCK2 isoform-specific inhibitor, has an anti-adipogenic activity which is not mediated by ROCK2 inhibition. To identify the target, we searched binding targets of KD025 by using the KINOMEscanTM screening platform, and we identified casein kinase 2 (CK2) as a novel target. KD025 showed comparable binding affinity to CK2α (Kd = 128 nM). By contrast, CK2 inhibitor CX-4945 and ROCK inhibitor fasudil did not show such cross-reactivity. In addition, KD025 effectively inhibited CK2 at a nanomolar concentration (IC50 = 50 nM). We examined if the inhibitory effect of KD025 on adipocyte differentiation is through the inhibition of CK2. Both CX-4945 and KD025 suppressed the generation of lipid droplets and the expression of proadipogenic genes Pparg and Cebpa in 3T3-L1 cells during adipocyte differentiation. Fasudil exerted no significant effect on the quantity of lipid droplets, but another ROCK inhibitor Y-27632 increased the expression of Pparg and Cebpa. Both CX-4945 and KD025 acted specifically in the middle stage (days 1–3) but were ineffective when treated at days 0–1 or the late stages, indicating that CX-4945 and KD025 may regulate the same target, CK2. The mRNA and protein levels of CK2α and CK2β generally decreased in 3T3-L1 cells at day 2 but recovered thereafter. Other well-known CK2 inhibitors DMAT and quinalizarin inhibited effectively the differentiation of 3T3-L1 cells. Taken together, the results of this study confirmed that KD025 inhibits ROCK2 and CK2, and that the inhibitory effect on adipocyte differentiation is through the inhibition of CK2.

2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Wen Zhang ◽  
Dan Shen ◽  
Yun Li ◽  
Hong Zhong ◽  
Xing Wang ◽  
...  

Abstract Background Obesity is a global epidemic disease that increases the risk of metabolic syndrome. However, therapeutic drugs for obesity are still scarce. In recent years, peptides have been identified as new biological regulators. RIFV (R-I-F-V-P-I-K-G-R-P-A-P), a novel active peptide from our peptide database. Methods We performed oil red O staining and triglyceride measurement to analyze the influence of RIFV on white preadipocytes differentiation. Then the effects of RIFV on cell proliferation, apoptosis and cell cycle were determined by using CCK-8 assay and flow cytometry. The mRNA and protein levels of adipogenesis-related genes were respectively detected by qRT-PCR and western blot. Rescue experiment was conducted to confirm whether RIFV could regulate adipocytes differentiation via targeting C/EBP-β. Finally, the luciferase reporter gene assay was performed to verify the regulation of RIFV on C/EBP-β gene. Results RIFV was revealed to inhibit the differentiation of human white adipocytes without affecting their proliferation. Additionally, RIFV could also suppress the differentiation of mouse primary white preadipocytes isolated from inguinal fat tissues. Furthermore, RIFV may have an inhibitory effect on adipogenesis by inhibiting the regulation of the adipogenic gene C/EBP-β. Conclusions Our results indicated that RIFV may be a novel essential regulator of adipocyte differentiation and represents a therapeutic strategy for obesity and related complications.


2004 ◽  
Vol 78 (14) ◽  
pp. 7634-7644 ◽  
Author(s):  
Ayman S. El-Guindy ◽  
George Miller

ABSTRACT ZEBRA, a member of the bZIP family, serves as a master switch between latent and lytic cycle Epstein-Barr virus (EBV) gene expression. ZEBRA influences the activity of another viral transactivator, Rta, in a gene-specific manner. Some early lytic cycle genes, such as BMRF1, are activated in synergy by ZEBRA and Rta. However, ZEBRA suppresses Rta's ability to activate a late gene, BLRF2. Here we show that this repressive activity is dependent on the phosphorylation state of ZEBRA. We find that two residues of ZEBRA, S167 and S173, that are phosphorylated by casein kinase 2 (CK2) in vitro are also phosphorylated in vivo. Inhibition of ZEBRA phosphorylation at the CK2 substrate motif, either by serine-to-alanine substitutions or by use of a specific inhibitor of CK2, abolished ZEBRA's capacity to repress Rta activation of the BLRF2 gene, but did not alter its ability to initiate the lytic cycle or to synergize with Rta in activation of the BMRF1 early-lytic-cycle gene. These studies illustrate how the phosphorylation state of a transcriptional activator can modulate its behavior as an activator or repressor of gene expression. Phosphorylation of ZEBRA at its CK2 sites is likely to play an essential role in proper temporal control of the EBV lytic life cycle.


2017 ◽  
Vol 45 (04) ◽  
pp. 833-846 ◽  
Author(s):  
Dae Il Hwang ◽  
Kyung-Jong Won ◽  
Do-Yoon Kim ◽  
Bokyung Kim ◽  
Hwan Myung Lee

The extract of chestnut (Castanea crenata var. dulcis) flower (CCDF) has antioxidant and antimelanogenic properties, but its anti-obesity properties have not been previously examined. In this study, we tested the effect of CCDF absolute on adipocyte differentiation by using 3T3-L1 cells and determining the bioactive component of CCDF absolute in 3T3-L1 cell differentiation. CCDF absolute (0.1–100[Formula: see text][Formula: see text]g/mL) did not change 3T3-L1 cell viability. At 50[Formula: see text][Formula: see text]g/mL and 100[Formula: see text][Formula: see text]g/mL, the absolute significantly reduced the accumulation of lipid droplets in 3T3-L1 cells that were induced by culture in medium containing 3-isobutyl-1-methylxanthine/dexamethasone/insulin (MDI). GC/MS analysis showed that CCDF absolute contains 10 compounds. Among these compounds, cinnamyl alcohol (3-phenyl-2-propene-1-ol) dose-dependently inhibited the increased accumulation of lipid droplets in MDI-contained medium-cultured 3T3-L1 cells at a concentration range of 0.1[Formula: see text][Formula: see text]g/mL to 10[Formula: see text][Formula: see text]g/mL that did not cause cytotoxicity in 3T3-L1 cells. The inhibitory effect was significant at 5[Formula: see text][Formula: see text]g/mL ([Formula: see text] of response in MDI alone-treated state, [Formula: see text]) and 10[Formula: see text][Formula: see text]g/mL ([Formula: see text] of response in MDI alone-treated state, [Formula: see text]). Moreover, the enhanced expression of obesity-related proteins (PPAR[Formula: see text], C/EBP[Formula: see text], SREBP-1c, and FAS) in MDI medium-cultivated 3T3-L1 cells was significantly attenuated by the addition of cinnamyl alcohol at 5[Formula: see text][Formula: see text]g/mL and 10[Formula: see text][Formula: see text]g/mL. These findings demonstrate that cinnamyl alcohol suppresses 3T3-L1 cell differentiation by inhibiting anti-adipogenesis-related proteins, and it may be a main bioactive component of CCDF absolute, exerting antidifferentiation action in 3T3-L1 cells. Therefore, cinnamyl alcohol, as well as CCDF absolute, may be potential candidates for the prevention or treatment of obesity.


2017 ◽  
Author(s):  
Xuehui Hong ◽  
He Huang ◽  
Zhijie Ding ◽  
Xing Feng ◽  
Yuekun Zhu ◽  
...  

AbstractRioK1 has recently been shown to play important roles in cancers, but its posttranslational regulation is largely unknown. Here we report that RioK1 is methylated at K411 by SETD7 methyltransferase, and that lysine-specific demethylase 1 (LSD1) reverses its methylation. The mutated RioK1 (K411R) that cannot be methylated exhibits a longer half-life than does the methylated RioK1. FBXO6 specifically interacts with K411-methylated RioK1 through its FBA domain to induce RioK1 ubiquitination. Casein kinase 2 (CK2) phosphorylates RioK1 at T410, which stabilizes RioK1 by antagonizing K411 methylation and impeding the recruitment of FBXO6 to RioK1. Functional experiments demonstrate the RioK1 methylation reduces the tumor growth and metastasis in CRC and GC. Importantly, the protein levels of CK2 and LSD1 show an inverse correlation with FBXO6 and SETD7 expression in human CRC tissues. Therefore, this study highlights the importance of a RioK1 methylation-phosphorylation switch in determining CRC and GC development.


2020 ◽  
Vol 17 (5) ◽  
pp. 616-618
Author(s):  
Kimia Kazemi ◽  
Negin Mozafari ◽  
Hajar Ashrafi ◽  
Pedram Rafiei ◽  
Amir Azadi

Background: Non-Hodgkin's lymphomas (NHL), derived from B- or T-cell, consist of a heterogeneous group of malignant lymphoproliferative disorders. Knockdown of Casein kinase 2 interacting protein-1 (CKIP-1) in NHL promoted cell proliferation and inhibited apoptosis via enhancing phosphorylated Protein Kinase B (PKB or AKT) expression. Statins are the class of drugs that inhibit the ratelimiting step of the mevalonate pathway, which is essential for the biosynthesis of various compounds, including cholesterol. Also, statins have anticancer properties being mediated by different mechanisms. Methods: A search on databases like Scopus and PubMed with keywords such as statin and non- Hodgkin's lymphomas was performed and Kyoto Encyclopedia of Genes and Genomes (KEGG) website was used to evaluate and reconfirm the involved cellular signaling pathway. Results: CKIP-1 is involved in the regulation of cell proliferation and apoptosis while plays an important role in many cancers. We can hypothesize that statins may increase the expression levels of CKIP-1 which could contribute to the reductions in phospho-AKT level. Hence, they may ameliorate the NHL patients via suppressing AKT phosphorylation and increasing CKIP- expression. Conclusion: Present review confirms the positive effect of statins on NHL by increasing CKIP-1 and reducing cell proliferation, subsequently.


2019 ◽  
Vol 18 (11) ◽  
pp. 1551-1562 ◽  
Author(s):  
Abbas Kabir ◽  
Kalpana Tilekar ◽  
Neha Upadhyay ◽  
C.S. Ramaa

Background: Cancer being a complex disease, single targeting agents remain unsuccessful. This calls for “multiple targeting”, wherein a single drug is so designed that it will modulate the activity of multiple protein targets. Topoisomerase 2 (Top2) helps in removing DNA tangles and super-coiling during cellular replication, Casein Kinase 2 (CK2) is involved in the phosphorylation of a multitude of protein targets. Thus, in the present work, we have tried to develop dual inhibitors of Top2 and CK2. Objective: With this view, in the present work, 2 human proteins, Top2 and CK2 have been targeted to achieve the anti-proliferative effects. Methods: Novel 1-acetylamidoanthraquinone (3a-3y) derivatives were designed, synthesized and their structures were elucidated by analytical and spectral characterization techniques (FTIR, 1H NMR, 13C NMR and Mass Spectroscopy). The synthesized compounds were then subjected to evaluation of cytotoxic potential by the Sulforhodamine B (SRB) protein assay, using HL60 and K562 cell lines. Ten compounds were analyzed for Top2, CK2 enzyme inhibitory potential. Further, top three compounds were subjected to cell cycle analysis. Results: The compounds 3a to 3c, 3e, 3f, 3i to 3p, 3t and 3x showed excellent cytotoxic activity to HL-60 cell line indicating their high anti-proliferative potential in AML. The compounds 3a to 3c, 3e, 3f, 3i to 3p and 3y have shown good to moderate activity on K-562 cell line. Compounds 3e, 3f, 3i, 3x and 3y were found more cytotoxic than standard doxorubicin. In cell cycle analysis, the cells (79-85%) were found to arrest in the G0/G1 phase. Conclusion: We have successfully designed, synthesized, purified and structurally characterized 1- acetylamidoanthraquinone derivatives. Even though our compounds need design optimization to further increase enzyme inhibition, their overall anti-proliferative effects were found to be encouraging.


2019 ◽  
Vol 12 (2) ◽  
pp. 89
Author(s):  
Janeen H. Trembley ◽  
Betsy T. Kren ◽  
Md. J. Abedin ◽  
Daniel P. Shaughnessy ◽  
Yingming Li ◽  
...  

The prosurvival protein kinase CK2, androgen receptor (AR), and nuclear factor kappa B (NFκB) interact in the function of prostate cells, and there is evidence of crosstalk between these signals in the pathobiology of prostate cancer (PCa). As CK2 is elevated in PCa, and AR and NFκB are involved in the development and progression of prostate cancer, we investigated their interaction in benign and malignant prostate cells in the presence of altered CK2 expression. Our results show that elevation of CK2 levels caused increased levels of AR and NFκB p65 in prostate cells of different phenotypes. Analysis of TCGA PCa data indicated that AR and CK2α RNA expression are strongly correlated. Small molecule inhibition or molecular down-regulation of CK2 caused reduction in AR mRNA expression and protein levels in PCa cells and in orthotopic xenograft tumors by various pathways. Among these, regulation of AR protein stability plays a unifying role in CK2 maintenance of AR protein levels. Our results show induction of various endoplasmic reticulum stress signals after CK2 inhibition, which may play a role in the PCa cell death response. Of note, CK2 inhibition caused loss of cell viability in both parental and enzalutamide-resistant castrate-resistant PCa cells. The present work elucidates the specific link of CK2 to the pathogenesis of PCa in association with AR and NFκB expression; further, the observation that inhibition of CK2 can exert a growth inhibitory effect on therapy-resistant PCa cells emphasizes the potential utility of CK2 inhibition in patients who are on enzalutamide treatment for advanced cancer.


2021 ◽  
Vol 12 (8) ◽  
Author(s):  
Barbara Bettegazzi ◽  
Laura Sebastian Monasor ◽  
Serena Bellani ◽  
Franca Codazzi ◽  
Lisa Michelle Restelli ◽  
...  

AbstractAlzheimer’s disease (AD) is the most common age-related neurodegenerative disorder. Increased Aβ production plays a fundamental role in the pathogenesis of the disease and BACE1, the protease that triggers the amyloidogenic processing of APP, is a key protein and a pharmacological target in AD. Changes in neuronal activity have been linked to BACE1 expression and Aβ generation, but the underlying mechanisms are still unclear. We provide clear evidence for the role of Casein Kinase 2 in the control of activity-driven BACE1 expression in cultured primary neurons, organotypic brain slices, and murine AD models. More specifically, we demonstrate that neuronal activity promotes Casein Kinase 2 dependent phosphorylation of the translation initiation factor eIF4B and this, in turn, controls BACE1 expression and APP processing. Finally, we show that eIF4B expression and phosphorylation are increased in the brain of APPPS1 and APP-KI mice, as well as in AD patients. Overall, we provide a definition of a mechanism linking brain activity with amyloid production and deposition, opening new perspectives from the therapeutic standpoint.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Jianwei Zhang ◽  
Lei Han ◽  
Feng Chen

Abstract Background Let-7a-5p is demonstrated to be a tumor inhibitor in nasopharyngeal carcinoma. However, the role of let-7a-5p in chronic rhinosinusitis with nasal polyps (CRSwNP) has not been reported. This study is designed to determine the pattern of expression and role of let-7a-5p in CRSwNP. Methods The expression level of let-7a-5p, TNF-α, IL-1β, and IL-6 in CRSwNP tissues and cells were detected by RT-qPCR. Western blot assay was carried out to measure the protein expression of the Ras-MAPK pathway. Dual luciferase reporter assay and RNA pull-down assay were used to explore the relationship between let-7a-5p and IL-6. Results Let-7a-5p was significantly downregulated in CRSwNP tissues and cells. Moreover, the mRNA expression of TNF-α, IL-1β and IL-6 was increased in CRSwNP tissues, while let-7a-5p mimic inhibited the expression of TNF-α, IL-1β and IL-6. Besides that, let-7a-5p was negatively correlated with TNF-α, IL-1β and IL-6 in CRSwNP tissues. In our study, IL-6 was found to be a target gene of let-7a-5p. Additionally, let-7-5p mimic obviously reduced the protein levels of Ras, p-Raf1, p-MEK1 and p-ERK1/2, while IL-6 overexpression destroyed the inhibitory effect of let-7a-5p on the Ras-MAPK pathway in CRSwNP. Conclusion We demonstrated that let-7a-5p/IL-6 interaction regulated the inflammatory response through the Ras-MAPK pathway in CRSwNP.


Sign in / Sign up

Export Citation Format

Share Document