scholarly journals Novel Anti-Melanogenic Compounds, (Z)-5-(Substituted Benzylidene)-4-thioxothiazolidin-2-one Derivatives: In Vitro and In Silico Insights

Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4963
Author(s):  
Heejeong Choi ◽  
Il Young Ryu ◽  
Inkyu Choi ◽  
Sultan Ullah ◽  
Hee Jin Jung ◽  
...  

To confirm that the β-phenyl-α,β-unsaturated thiocarbonyl (PUSTC) scaffold, similar to the β-phenyl-α,β-unsaturated carbonyl (PUSC) scaffold, acts as a core inhibitory structure for tyrosinase, twelve (Z)-5-(substituted benzylidene)-4-thioxothiazolidin-2-one ((Z)-BTTZ) derivatives were designed and synthesized. Seven of the twelve derivatives showed stronger inhibitory activity than kojic acid against mushroom tyrosinase. Compound 2b (IC50 = 0.47 ± 0.97 µM) exerted a 141-fold higher inhibitory potency than kojic acid. Kinetic studies’ results confirmed that compounds 2b and 2f are competitive tyrosinase inhibitors, which was supported by high binding affinities with the active site of tyrosinase by docking simulation. Docking results using a human tyrosinase homology model indicated that 2b and 2f might potently inhibit human tyrosinase. In vitro assays of 2b and 2f were conducted using B16F10 melanoma cells. Compounds 2b and 2f significantly and concentration-dependently inhibited intracellular melanin contents, and the anti-melanogenic effects of 2b at 10 µM and 2f at 25 µM were considerably greater than the inhibitory effect of kojic acid at 25 µM. Compounds 2b and 2f similarly inhibited cellular tyrosinase activity and melanin contents, indicating that the anti-melanogenic effects of both were due to tyrosinase inhibition. A strong binding affinity with the active site of tyrosinase and potent inhibitions of mushroom tyrosinase, cellular tyrosinase activity, and melanin generation in B16F10 cells indicates the PUSTC scaffold offers an attractive platform for the development of novel tyrosinase inhibitors.

Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3307 ◽  
Author(s):  
EunJin Bang ◽  
Sang-Gyun Noh ◽  
Sugyeong Ha ◽  
Hee Jung ◽  
Dae Kim ◽  
...  

Tyrosinase is a key enzyme in melanin synthesis, catalyzing the initial rate-limiting steps of melanin synthesis. Abnormal and excessive melanin synthesis is the primary cause of serious skin disorders including melasma, senile lentigo, freckles, and age spots. In attempts to find potent and safe tyrosinase inhibitors, we designed and synthesized a novel compound, (Z)-3-(3-bromo-4-hydroxybenzylidene)thiochroman-4-one (MHY1498), and evaluated its tyrosinase inhibitory activity in vitro and in silico. The chemical structures of (Z)-3-benzylidenethiochroman-4-one analogues, including the novel compound MHY1498, were rationally designed and synthesized as hybrid structures of reported potent tyrosinase inhibitors, which were confirmed both in vitro and in vivo: (Z)-5-(substituted benzylidene)thiazolidine-2,4-diones (Compound A) and 2-(substituted phenyl)benzo[d]thiazoles (Compound B). During screening, MHY1498 showed a strong dose-dependent inhibitory effect on mushroom tyrosinase. The IC50 value of MHY1498 (4.1 ± 0.6 μM) was significantly lower than that of the positive control, kojic acid (22.0 ± 4.7 μM). In silico molecular multi-docking simulation and inhibition mechanism studies indicated that MHY1498 interacts competitively with the tyrosinase enzyme, with greater affinity for the active site of tyrosinase than the positive control. Furthermore, in B16F10 melanoma cells treated with α-melanocyte-stimulating hormone, MHY1498 suppressed both melanin production and tyrosinase activity. In conclusion, our data demonstrate that MHY1498, a synthesized novel compound, effectively inhibits tyrosinase activity and has potential for treating hyperpigmentation and related disorders.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2477
Author(s):  
Yasir Nazir ◽  
Hummera Rafique ◽  
Naghmana Kausar ◽  
Qamar Abbas ◽  
Zaman Ashraf ◽  
...  

Targeting tyrosinase for melanogenesis disorders is an established strategy. Hydroxyl-substituted benzoic and cinnamic acid scaffolds were incorporated into new chemotypes that displayed in vitro inhibitory effects against mushroom and human tyrosinase for the purpose of identifying anti-melanogenic ingredients. The most active compound 2-((4-methoxyphenethyl)amino)-2-oxoethyl (E)-3-(2,4-dihydroxyphenyl) acrylate (Ph9), inhibited mushroom tyrosinase with an IC50 of 0.059 nM, while 2-((4-methoxyphenethyl)amino)-2-oxoethyl cinnamate (Ph6) had an IC50 of 2.1 nM compared to the positive control, kojic acid IC50 16700 nM. Results of human tyrosinase inhibitory activity in A375 human melanoma cells showed that compound (Ph9) and Ph6 exhibited 94.6% and 92.2% inhibitory activity respectively while the positive control kojic acid showed 72.9% inhibition. Enzyme kinetics reflected a mixed type of inhibition for inhibitor Ph9 (Ki 0.093 nM) and non-competitive inhibition for Ph6 (Ki 2.3 nM) revealed from Lineweaver–Burk plots. In silico docking studies with mushroom tyrosinase (PDB ID:2Y9X) predicted possible binding modes in the catalytic site for these active compounds. Ph9 displayed no PAINS (pan-assay interference compounds) alerts. Our results showed that compound Ph9 is a potential candidate for further development of tyrosinase inhibitors.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Zheng-Fei Yan ◽  
Yang Yang ◽  
Feng-Hua Tian ◽  
Xin-Xin Mao ◽  
Yu Li ◽  
...  

The aim of the present study is to preliminarily investigate the antimelanogenesis effect ofInonotus obliquusextracts by cell-free mushroom tyrosinase assay. It was found that petroleum ether and n-butanol extracts might contain unknown potential tyrosinase inhibitors, while its ethyl acetate extract might contain some unknown accelerators. Six compounds were isolated and their structures were identified by interpretation of NMR data and nicotinic acid was first discovered inInonotus obliquus. In cells testing, betulin and trametenolic acid decreased tyrosinase activity and melanin content, while inotodiol and lanosterol significantly increased tyrosinase activity and melanin content, showing anAC⁡50of 9.74 and 8.43 μM, respectively. Nicotinie acid, 3β,22,25-trihydroxy-lanosta-8-ene, had a little or no effect on tyrosinase. Betulin exhibited a mode of noncompetitive inhibition with aKI=KISof 0.4 μM on tyrosinase activity showing an IC50of 5.13 μM and being more effective than kojic acid (6.43 μM), and trametenolic acid exhibited a mode of mixed inhibition with aKIof 0.9 μM,KISof 0.5 μM, and anIC50of 7.25 μM. We proposed betulin and trametenolic acid as a new candidate of potent tyrosinase inhibitors and inotodiol and lanosterol as accelerators that could be used as therapeutic agent.


2018 ◽  
Vol 16 (1) ◽  
pp. 36-44 ◽  
Author(s):  
Zehra Tuğçe Gür ◽  
Fatma Sezer Şenol ◽  
Suhaib Shekfeh ◽  
İlkay Erdoğan Orhan ◽  
Erden Banoğlu ◽  
...  

Background: A series of novel cinnamic acid piperazine amide derivatives has been designed and synthesized, and their biological activities were also evaluated as potential tyrosinase inhibitors. Methods: Compounds 9, 11 and 17 showed the most potent biological activity (IC50 = 66.5, 61.1 and 66 µM, respectively). In silico docking simulation was performed to position compound 11 into the Agaricus bisporus mushroom tyrosinase’s active site to determine the putative binding interactions. Results and Conclusion: The results indicated that compound 11 could serve as a promising lead compound for further development of potent tyrosinase inhibitors.


2020 ◽  
Vol 20 (14) ◽  
pp. 1714-1721
Author(s):  
Hatem A. Abuelizz ◽  
El Hassane Anouar ◽  
Mohamed Marzouk ◽  
Mizaton H. Hasan ◽  
Siti R. Saleh ◽  
...  

Background: The use of tyrosinase has confirmed to be the best means of recognizing safe, effective, and potent tyrosinase inhibitors for whitening skin. Twenty-four 2-phenoxy(thiomethyl)pyridotriazolopyrimidines were synthesized and characterized in our previous studies. Objective: The present work aimed to evaluate their cytotoxicity against HepG2 (hepatocellular carcinoma), A549 (pulmonary adenocarcinoma), MCF-7 (breast adenocarcinoma) and WRL 68 (embryonic liver) cell lines. Methods: MTT assay was employed to investigate the cytotoxicity, and a tyrosinase inhibitor screening kit was used to evaluate the Tyrosinase (TYR) inhibitory activity of the targets. Results: The tested compounds exhibited no considerable cytotoxicity, and nine of them were selected for a tyrosinase inhibitory test. Compounds 2b, 2m, and 5a showed good inhibitory percentages against TYR compared to that of kojic acid (reference substance). Molecular docking was performed to rationalize the Structure-Activity Relationship (SAR) of the target pyridotriazolopyrimidines and analyze the binding between the docked-selected compounds and the amino acid residues in the active site of tyrosinase. Conclusion: The target pyridotriazolopyrimidines were identified as a new class of tyrosinase inhibitors.


2020 ◽  
Vol 13 (3) ◽  
pp. 233-244
Author(s):  
Amelia Nathania Dong ◽  
Nafees Ahemad ◽  
Yan Pan ◽  
Uma Devi Palanisamy ◽  
Beow Chin Yiap ◽  
...  

Background: There is a large inter-individual variation in cytochrome P450 2C19 (CYP2C19) activity. The variability can be caused by the genetic polymorphism of CYP2C19 gene. This study aimed to investigate the molecular and kinetics basis for activity changes in three alleles including CYP2C19*23, CYP2C19*24 and CYP2C19*25found in the Chinese population. Methods: The three variants expressed by bacteria were investigated using substrate (omeprazole and 3- cyano-7-ethoxycoumarin[CEC]) and inhibitor (ketoconazole, fluoxetine, sertraline and loratadine) probes in enzyme assays along with molecular docking. Results: All alleles exhibited very low enzyme activity and affinity towards omeprazole and CEC (6.1% or less in intrinsic clearance). The inhibition studies with the four inhibitors, however, suggested that mutations in different variants have a tendency to cause enhanced binding (reduced IC50 values). The enhanced binding could partially be explained by the lower polar solvent accessible surface area of the inhibitors relative to the substrates. Molecular docking indicated that G91R, R335Q and F448L, the unique mutations in the alleles, have caused slight alteration in the substrate access channel morphology and a more compact active site cavity hence affecting ligand access and binding. It is likely that these structural alterations in CYP2C19 proteins have caused ligand-specific alteration in catalytic and inhibitory specificities as observed in the in vitro assays. Conclusion: This study indicates that CYP2C19 variant selectivity for ligands was not solely governed by mutation-induced modifications in the active site architecture, but the intrinsic properties of the probe compounds also played a vital role.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Hooshang Hamidian

In the present paper, we report the synthesis and pharmacological evaluation of a new series of azo compounds with different groups (1-naphthol, 2-naphthol, andN,N-dimethylaniline) and trifluoromethoxy and fluoro substituents in the scaffold. All synthesized compounds (5a–5f) showed the most potent mushroom tyrosinase inhibition (IC50values in the range of 4.39 ± 0.76–1.71 ± 0.49 µM), comparable to the kojic acid, as reference standard inhibitor. All the novel compounds were characterized by FT-IR,1H NMR,13C NMR, and elemental analysis.


2020 ◽  
Vol 11 ◽  
Author(s):  
Jinpeng Lv ◽  
Songzhou Jiang ◽  
Ying Yang ◽  
Ximei Zhang ◽  
Rongyin Gao ◽  
...  

FGIN-1-27 is a synthetic mitochondrial diazepam binding inhibitor receptor (MDR) agonist that has demonstrated pro-apoptotic, anti-anxiety, and steroidogenic activity in various studies. Here we report, for the first time, the anti-melanogenic efficacy of FGIN-1-27 in vitro and in vivo. FGIN-1-27 significantly inhibited basal and α-melanocyte-stimulating hormone (α-MSH)-, 1-Oleoyl-2-acetyl-sn-glycerol (OAG)- and Endothelin-1 (ET-1)-induced melanogenesis without cellular toxicity. Mushroom tyrosinase activity assay showed that FGIN-1-27 did not directly inhibit tyrosinase activity, which suggested that FGIN-1-27 was not a direct inhibitor of tyrosinase. Although it was not capable of modulating the catalytic activity of mushroom tyrosinase in vitro, FGIN-1-27 downregulated the expression levels of key proteins that function in melanogenesis. FGIN-1-27 played these functions mainly by suppressing the PKA/CREB, PKC-β, and MAPK pathways. Once inactivated, it decreased the expression of MITF, tyrosinase, TRP-1, TRP-2, and inhibited the tyrosinase activity, finally inhibiting melanogenesis. During in vivo experiments, FGIN-1-27 inhibited the body pigmentation of zebrafish and reduced UVB-induced hyperpigmentation in guinea pig skin, but not a reduction of numbers of melanocytes. Our findings indicated that FGIN-1-27 exhibited no cytotoxicity and inhibited melanogenesis in both in vitro and in vivo models. It may prove quite useful as a safer skin-whitening agent.


2019 ◽  
Vol 20 (19) ◽  
pp. 4785
Author(s):  
Junya Azumi ◽  
Tomoya Takeda ◽  
Yasuhiro Shimada ◽  
Hisashi Aso ◽  
Takashi Nakamura

The organogermanium compound 3-(trihydroxygermyl)propanoic acid (THGP) has various biological activities. We previously reported that THGP forms a complex with cis-diol structures. L-3,4-Dihydroxyphenylalanine (L-DOPA), a precursor of melanin, contains a cis-diol structure in its catechol skeleton, and excessive melanin production causes skin darkening and staining. Thus, the cosmetic field is investigating substances that suppress melanin production. In this study, we investigated whether THGP inhibits melanin synthesis via the formation of a complex with L-DOPA using mushroom tyrosinase and B16 4A5 melanoma cells. The ability of THGP to interact with L-DOPA was analyzed by 1H-NMR, and the influence of THGP and/or kojic acid on melanin synthesis was investigated. We also examined the effect of THGP on cytotoxicity, tyrosinase activity, and gene expression and found that THGP interacted with L-DOPA, a precursor of melanin with a cis-diol structure. The results also showed that THGP inhibited melanin synthesis, exerted a synergistic effect with kojic acid, and did not affect tyrosinase activity or gene expression. These results suggest that THGP is a useful substrate that functions as an inhibitor of melanogenesis and that its effect is enhanced by combination with kojic acid.


Sign in / Sign up

Export Citation Format

Share Document