scholarly journals On the Interactions of Melatonin/β-Cyclodextrin Inclusion Complex: A Novel Approach Combining Efficient Semiempirical Extended Tight-Binding (xTB) Results with Ab Initio Methods

Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5881
Author(s):  
Riccardo Ferrero ◽  
Stefano Pantaleone ◽  
Massimo Delle Piane ◽  
Fabrizio Caldera ◽  
Marta Corno ◽  
...  

Melatonin (MT) is a molecule of paramount importance in all living organisms, due to its presence in many biological activities, such as circadian (sleep–wake cycle) and seasonal rhythms (reproduction, fattening, molting, etc.). Unfortunately, it suffers from poor solubility and, to be used as a drug, an appropriate transport vehicle has to be developed, in order to optimize its release in the human tissues. As a possible drug-delivery system, β-cyclodextrin (βCD) represents a promising scaffold which can encapsulate the melatonin, releasing when needed. In this work, we present a computational study supported by experimental IR spectra on inclusion MT/βCD complexes. The aim is to provide a robust, accurate and, at the same time, low-cost methodology to investigate these inclusion complexes both with static and dynamic simulations, in order to study the main actors that drive the interactions of melatonin with β-cyclodextrin and, therefore, to understand its release mechanism.

Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 719
Author(s):  
Teresa Russo ◽  
Pierpaolo Fucile ◽  
Rosa Giacometti ◽  
Filomena Sannino

Naturally occurring substances or polymeric biomolecules synthesized by living organisms during their entire life cycle are commonly defined as biopolymers. Different classifications of biopolymers have been proposed, focusing on their monomeric units, thus allowing them to be distinguished into three different classes with a huge diversity of secondary structures. Due to their ability to be easily manipulated and modified, their versatility, and their sustainability, biopolymers have been proposed in different fields of interest, starting from food, pharmaceutical, and biomedical industries, (i.e., as excipients, gelling agents, stabilizers, or thickeners). Furthermore, due to their sustainable and renewable features, their biodegradability, and their non-toxicity, biopolymers have also been proposed in wastewater treatment, in combination with different reinforcing materials (natural fibers, inorganic micro- or nano-sized fillers, antioxidants, and pigments) toward the development of novel composites with improved properties. On the other hand, the improper or illegal emission of untreated industrial, agricultural, and household wastewater containing a variety of organic and inorganic pollutants represents a great risk to aquatic systems, with a negative impact due to their high toxicity. Among the remediation techniques, adsorption is widely used and documented for its efficiency, intrinsic simplicity, and low cost. Biopolymers represent promising and challenging adsorbents for aquatic environments’ decontamination from organic and inorganic pollutants, allowing for protection of the environment and living organisms. This review summarizes the results obtained in recent years from the sustainable removal of contaminants by biopolymers, trying to identify open questions and future perspectives to overcome the present gaps and limitations.


2021 ◽  
Vol 24 (3) ◽  
pp. 85-90
Author(s):  
Neni Frimayanti ◽  
Adel Zamri ◽  
Yum Eryanti ◽  
Noval Herfindo ◽  
Veza Azteria

Coronavirus is a pandemic in the world. It requires researchers and scientists to work hard to find a vaccine or drug to inhibit the development of the coronavirus. Many drugs have been used, such as remdesivir, lopinavir, and chloroquine. However, how effective is the use of these drugs for inhibiting the coronavirus’s growth? There is no research has been done. Curcumin is now known as one of the compounds that have some biological activities, and it is also can potentially be used as a CoV-2 inhibitor. The computational study, i.e., molecular docking and molecular dynamic, can help researchers to predict which compounds have the potential as an inhibitor against the CoV-2 coronavirus. In this study, lopinavir was used as a positive control. Lopinavir and 45 curcumin analog compounds were docked against the main protease protein with 6LU7 PDB ID. Based on the docking results, it was discovered that compound 1, compound 2, and compound 4 have the same binding orientation as lopinavir. Molecular dynamic simulation with the lowest binding free energy conformation was used to check these compounds’ stability. Only compound 4 was maintained to observe hydrogen bonding with Lys5 and Lys137 with a distance of 2.9 Å. The distance of hydrogen bonds and binding free energy over simulation time is essential to elucidate the potential compound’s affinity. For then, compound 4 can be used as a potential inhibitor against the CoV-2 coronavirus.


2021 ◽  
Vol 08 ◽  
Author(s):  
Prashant B Hiremath ◽  
Kantharaju Kamanna

Background: Present chemists are more interested to develop eco-friendly, simple, efficient and economic approach methods as an important tool for many synthetic transformations, which employ various natural feedstock extracts, which are well known for their non-hazardousness, no usage of any external base and replace many organic and inorganic based catalysts. At present literature reported so many homogenous catalytic approaches, which follow green chemistry principle established for various organic transformations catalyzed by WERSA, BFE, WEPPA, WEMFSA, WEMPA, Eichhorniacrassipes. 2-aryl benzimidazole derivatives represents as prominent molecules with wide variety of applications showed in biological activities and in material science. In the present study, an agro-waste sourced catalytic media Banana Peel Ash Extract (BPAE) established for the green method synthesis of 2-aryl benzimidazole derivatives at chromatographically pure form promoted by ultrasound at room temperature condition is described. BPAE stands as a low cost, abundantly available, natural feedstock extract. Selected derivatives were screened for the antimicrobial studies and showed comparable activity to the reference drug used. Methods: The agro-waste sourced from banana peel is utilized for the preparation of BPAE catalyst, which is employed for the synthesis of 2-aryl benzimidazole derivatives under ultrasound waves at room temperature. Results: 2-aryl benzimidazoles obtained through reaction of substituted o-phenylene diamine with substituted benzoyl choride catalyzed by BPAE under ultrasound waves at room temperature. BPAE catalyst is characterized by flame emission spectrometry, SEM-EDX and XRD techniques. Conclusion: An eco-friendly, sustainable and novel approach for the synthesis of 2-aryl benzimidazoles using natural feedstock BPAE. The major merits of using BPAE are agro-waste derived catalyst, abundant availability, faster reaction, simple work-up and no usage of column chromatography.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hong Li ◽  
Andrew Hung ◽  
Angela Wei Hong Yang

AbstractProstate cancer (PCa) is a cancer that occurs in the prostate with high morbidity and mortality. Danggui Beimu Kushen Wan (DBKW) is a classic formula for patients with difficult urination including PCa. This study aimed to investigate the molecular mechanisms of DBKW for PCa. We obtained DBKW compounds from our previous reviews. We identified potential targets for PCa from literature search, currently approved drugs and Open Targets database and filtered them by protein–protein interaction network analysis. We selected 26 targets to predict three cancer-related pathways. A total of 621 compounds were screened via molecular docking using PyRx and AutoDock Vina against 21 targets for PCa, producing 13041 docking results. The binding patterns and positions showed that a relatively small number of tight-binding compounds from DBKW were predicted to interact strongly and selectively with three targets. The top five high-binding-affinity compounds were selected to generate a network, indicating that compounds from all three herbs had high binding affinity against the 21 targets and may have potential biological activities with the targets. DBKW contains multi-targeting agents that could act on more than one pathway of PCa simultaneously. Further studies could focus on validating the computational results via experimental studies.


2006 ◽  
Vol 1 (2) ◽  
pp. 1934578X0600100 ◽  
Author(s):  
Valery M Dembitsky

This review is intended as a comprehensive survey of iodinated metabolites possessing carbon–iodine covalent bond, which have been obtained from living organisms. Generally thought to be minor components produced by many different organisms these interesting compounds now number more than 110. Many from isolated and identified iodine-containing metabolites showed high biological activities. Recent research, especially in the marine area, indicates this number will increase in the future. Sources of iodinated metabolites include microorganisms, algae, marine invertebrates, and some animals. Their origin and possible biological significance have also been discussed.


2021 ◽  
Vol 7 (7) ◽  
pp. 541
Author(s):  
Lúcia P. S. Pimenta ◽  
Dhionne C. Gomes ◽  
Patrícia G. Cardoso ◽  
Jacqueline A. Takahashi

Filamentous fungi are known to biosynthesize an extraordinary range of azaphilones pigments with structural diversity and advantages over vegetal-derived colored natural products such agile and simple cultivation in the lab, acceptance of low-cost substrates, speed yield improvement, and ease of downstream processing. Modern genetic engineering allows industrial production, providing pigments with higher thermostability, water-solubility, and promising bioactivities combined with ecological functions. This review, covering the literature from 2020 onwards, focuses on the state-of-the-art of azaphilone dyes, the global market scenario, new compounds isolated in the period with respective biological activities, and biosynthetic pathways. Furthermore, we discussed the innovations of azaphilone cultivation and extraction techniques, as well as in yield improvement and scale-up. Potential applications in the food, cosmetic, pharmaceutical, and textile industries were also explored.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
João Gama Monteiro ◽  
Jesús L. Jiménez ◽  
Francesca Gizzi ◽  
Petr Přikryl ◽  
Jonathan S. Lefcheck ◽  
...  

AbstractUnderstanding the complex factors and mechanisms driving the functioning of coastal ecosystems is vital towards assessing how organisms, ecosystems, and ultimately human populations will cope with the ecological consequences of natural and anthropogenic impacts. Towards this goal, coastal monitoring programs and studies must deliver information on a range of variables and factors, from taxonomic/functional diversity and spatial distribution of habitats, to anthropogenic stress indicators such as land use, fisheries use, and pollution. Effective monitoring programs must therefore integrate observations from different sources and spatial scales to provide a comprehensive view to managers. Here we explore integrating aerial surveys from a low-cost Remotely Piloted Aircraft System (RPAS) with concurrent underwater surveys to deliver a novel approach to coastal monitoring. We: (i) map depth and substrate of shallow rocky habitats, and; (ii) classify the major biotopes associated with these environmental axes; and (iii) combine data from i and ii to assess the likely distribution of common sessile organismal assemblages over the survey area. Finally, we propose a general workflow that can be adapted to different needs and aerial platforms, which can be used as blueprints for further integration of remote-sensing with in situ surveys to produce spatially-explicit biotope maps.


2021 ◽  
Author(s):  
Ching-Wei Chuang ◽  
Harry H. Cheng

Abstract In the modern world, building an autonomous multi-robot system is essential to coordinate and control robots to help humans because using several low-cost robots becomes more robust and efficient than using one expensive, powerful robot to execute tasks to achieve the overall goal of a mission. One research area, multi-robot task allocation (MRTA), becomes substantial in a multi-robot system. Assigning suitable tasks to suitable robots is crucial in coordination, which may directly influence the result of a mission. In the past few decades, although numerous researchers have addressed various algorithms or approaches to solve MRTA problems in different multi-robot systems, it is still difficult to overcome certain challenges, such as dynamic environments, changeable task information, miscellaneous robot abilities, the dynamic condition of a robot, or uncertainties from sensors or actuators. In this paper, we propose a novel approach to handle MRTA problems with Bayesian Networks (BNs) under these challenging circumstances. Our experiments exhibit that the proposed approach may effectively solve real problems in a search-and-rescue mission in centralized, decentralized, and distributed multi-robot systems with real, low-cost robots in dynamic environments. In the future, we will demonstrate that our approach is trainable and can be utilized in a large-scale, complicated environment. Researchers might be able to apply our approach to other applications to explore its extensibility.


Sign in / Sign up

Export Citation Format

Share Document