scholarly journals An Overview of Linear Dielectric Polymers and Their Nanocomposites for Energy Storage

Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6148
Author(s):  
Lvye Dou ◽  
Yuan-Hua Lin ◽  
Ce-Wen Nan

As one of the most important energy storage devices, dielectric capacitors have attracted increasing attention because of their ultrahigh power density, which allows them to play a critical role in many high-power electrical systems. To date, four typical dielectric materials have been widely studied, including ferroelectrics, relaxor ferroelectrics, anti-ferroelectrics, and linear dielectrics. Among these materials, linear dielectric polymers are attractive due to their significant advantages in breakdown strength and efficiency. However, the practical application of linear dielectrics is usually severely hindered by their low energy density, which is caused by their relatively low dielectric constant. This review summarizes some typical studies on linear dielectric polymers and their nanocomposites, including linear dielectric polymer blends, ferroelectric/linear dielectric polymer blends, and linear polymer nanocomposites with various nanofillers. Moreover, through a detailed analysis of this research, we summarize several existing challenges and future perspectives in the research area of linear dielectric polymers, which may propel the development of linear dielectric polymers and realize their practical application.

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7188
Author(s):  
Bipul Deka ◽  
Kyung-Hoon Cho

Dielectric capacitors have been widely studied because their electrostatic storage capacity is enormous, and they can deliver the stored energy in a very short time. Relaxor ferroelectrics-based dielectric capacitors have gained tremendous importance for the efficient storage of electrical energy. Relaxor ferroelectrics possess low dielectric loss, low remanent polarization, high saturation polarization, and high breakdown strength, which are the main parameters for energy storage. This article focuses on a timely review of the energy storage performance of BiFeO3-based relaxor ferroelectrics in bulk ceramics, multilayers, and thin film forms. The article begins with a general introduction to various energy storage systems and the need for dielectric capacitors as energy storage devices. This is followed by a brief discussion on the mechanism of energy storage in capacitors, ferroelectrics, anti-ferroelectrics, and relaxor ferroelectrics as potential candidates for energy storage. The remainder of this article is devoted to reviewing the energy storage performance of bulk ceramics, multilayers, and thin films of BiFeO3-based relaxor ferroelectrics, along with a discussion of strategies to address some of the issues associated with their application as energy storage systems.


2018 ◽  
Vol 20 (7) ◽  
pp. 5001-5011 ◽  
Author(s):  
Liwei Wang ◽  
Xingyi Huang ◽  
Yingke Zhu ◽  
Pingkai Jiang

Introducing a high dielectric constant (high-k) nanofiller into a dielectric polymer is the most common way to achieve flexible nanocomposites for electrostatic energy storage devices.


Author(s):  
ANINA ANJU B ◽  
Soma Dutta

Abstract The intricacies in identifying the appropriate material system for energy storage applications have been the biggest struggle of the scientific community. Countless contributions by researchers worldwide have now helped us identify the possible snags and limitations associated with each material/method. This review intends to briefly discuss state of the art in energy storage applications of dielectric materials such as linear dielectrics, ferroelectrics, anti-ferroelectrics, and relaxor ferroelectrics. Based on the recent studies, we find that the eco-friendly lead-free dielectrics, which have been marked as inadequate to compete with lead-based systems, are excellent for energy applications. Moreover, some promising strategies to improve the functional properties of dielectric materials are discussed.


Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1207 ◽  
Author(s):  
Daomin Min ◽  
Chenyu Yan ◽  
Rui Mi ◽  
Chao Ma ◽  
Yin Huang ◽  
...  

Dielectric energy storage capacitors have advantages such as ultra-high power density, extremely fast charge and discharge speed, long service lifespan and are significant for pulsed power system, smart power grid, and power electronics. Polypropylene (PP) is one of the most widely used dielectric materials for dielectric energy storage capacitors. It is of interest to investigate how to improve its electrical breakdown strength by nanodoping and the influencing mechanism of nanodoping on the electrical breakdown properties of polymer nanocomposites. PP/Al2O3 nanocomposite dielectric materials with various weight fraction of nanoparticles are fabricated by melt-blending and hot-pressing methods. Thermally stimulated current, surface potential decay, and dc electrical breakdown experiments show that deep trap properties and associated molecular chain motion are changed by incorporating nanofillers into polymer matrix, resulting in the variations in conductivity and dc electrical breakdown field of nanocomposite dielectrics. Then, a charge transport and molecular displacement modulated electrical breakdown model is utilized to simulate the dc electrical breakdown behavior. It is found that isolated interfacial regions formed in nanocomposite dielectrics at relatively low loadings reduce the effective carrier mobility and strengthen the interaction between molecular chains, hindering the transport of charges and the displacement of molecular chains with occupied deep traps. Accordingly, the electrical breakdown strength is enhanced at relatively low loadings. Interfacial regions may overlap in nanocomposite dielectrics at relatively high loadings so that the effective carrier mobility decreases and the interaction between molecular chains may be weakened. Consequently, the molecular motion is accelerated by electric force, leading to the decrease in electrical breakdown strength. The experiments and simulations reveals that the influence of nanodoping on dc electrical breakdown properties may origin from the changes in the charge transport and molecular displacement characteristics caused by interfacial regions in nanocomposite dielectrics.


2018 ◽  
Vol 6 (4) ◽  
pp. 1403-1411 ◽  
Author(s):  
Junwei Yang ◽  
Haian Xie ◽  
Hao Chen ◽  
Zhuqun Shi ◽  
Tao Wu ◽  
...  

Flexible and eco-friendly dielectric materials with high energy density and breakdown strength have promising applications in energy storage devices.


2012 ◽  
Vol 535-537 ◽  
pp. 1619-1622
Author(s):  
Guo Hua Chen ◽  
Tao Yong Liu ◽  
Yun Yang ◽  
Wen Jun Zhang

The influences of BaF2 addition on phase composition, electrical property and energy storage density in strontium barium niobate based glass-ceramics prepared using melt-casting followed by controlled crystallization were investigated. The results indicate that adding 1wt% BaF2 improves the precipitation of Ba0.27Sr0.75Nb2O6 phase. However, the secondary phases, Ba3SrNb2O9 and BaBF5 are formed as the amount of BaF2 exceeds 3wt% when heated at 800°C/3h+900°C/3h in the glass-ceramics. The dielectric constant, microstructure, volume resistivity and breakdown strength are related to BaF2 content. The maximum breakdown strength (1450 kV/cm) and the energy storage density (5.1J/cm3) can be obtained in the glass-ceramic sample with 1wt% BaF2 addition, which would be suitable to be used as the dielectric materials for high energy storage capacitors.


Author(s):  
Zhenyu Zhang ◽  
Samia Said ◽  
Keenan Smith ◽  
Yeshui Zhang ◽  
Guanjie He ◽  
...  

Aqueous zinc-ion batteries with Zn metal anodes are promising candidates for future electrochemical energy storage devices. However, Zn dendrite growth greatly limits their practical application. Many recent studies have developed...


Author(s):  
Li Li ◽  
Jingsai Cheng ◽  
Yunyun Cheng ◽  
Ting Han ◽  
Yang Liu ◽  
...  

Dielectric polymers with high electrostatic energy storage capability are the enabling technology for advanced electronics and electric power systems. However, the development of dielectric polymers is rather limited by their...


2020 ◽  
Vol 11 ◽  
pp. 1190-1197
Author(s):  
Adnanullah Khan ◽  
Amir Habib ◽  
Adeel Afzal

High permittivity and breakdown strength are desired to improve the energy storage density of dielectric materials based on reinforced polymer composites. This article presents the synthesis of polythiophene-encapsulated BaTiO3 (BTO-PTh) nanoparticles via an in situ Cu(II)-catalyzed chemical oxidative polymerization of thiophene monomer on hydrothermally obtained tetragonal BTO nanocrystals. The formed core–shell-type BTO-PTh nanoparticles exhibit excellent dielectric properties with high permittivity (25.2) and low loss (0.04) at high frequency (106 Hz). A thick PTh encapsulation layer on the surface of the BTO nanoparticles improves their breakdown strength from 47 to 144 kV/mm and the energy storage density from 0.32 to 2.48 J/cm3. A 7.75-fold increase in the energy storage density of the BTO-PTh nanoparticles is attributed to simultaneously high permittivity and breakdown strength, which are excellent for potential energy storage applications.


Sign in / Sign up

Export Citation Format

Share Document