scholarly journals Nanoparticulate Gels for Cutaneous Administration of Caffeic Acid

Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 961
Author(s):  
Maddalena Sguizzato ◽  
Paolo Mariani ◽  
Francesca Ferrara ◽  
Markus Drechsler ◽  
Supandeep Singh Hallan ◽  
...  

Caffeic acid is a natural antioxidant, largely distributed in plant tissues and food sources, possessing anti-inflammatory, antimicrobial, and anticarcinogenic properties. The object of this investigation was the development of a formulation for caffeic acid cutaneous administration. To this aim, caffeic acid has been loaded in solid lipid nanoparticles by hot homogenization and ultrasonication, obtaining aqueous dispersions with high drug encapsulation efficiency and 200 nm mean dimension, as assessed by photon correlation spectroscopy. With the aim to improve the consistence of the aqueous nanodispersions, different types of polymers have been considered. Particularly, poloxamer 407 and hyaluronic acid gels containing caffeic acid have been produced and characterized by X-ray and rheological analyses. A Franz cell study enabled to select poloxamer 407, being able to better control caffeic acid diffusion. Thus, a nanoparticulate gel has been produced by addition of poloxamer 407 to nanoparticle dispersions. Notably, caffeic acid diffusion from nanoparticulate gel was eight-fold slower with respect to the aqueous solution. In addition, the spreadability of nanoparticulate gel was suitable for cutaneous administration. Finally, the antioxidant effect of caffeic acid loaded in nanoparticulate gel has been demonstrated by ex-vivo evaluation on human skin explants exposed to cigarette smoke, suggesting a protective role exerted by the nanoparticles.

Pharmaceutics ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 740
Author(s):  
Supandeep Singh Hallan ◽  
Maddalena Sguizzato ◽  
Paolo Mariani ◽  
Rita Cortesi ◽  
Nicolas Huang ◽  
...  

The present investigation describes a formulative study aimed at designing ethosomes for caffeic acid transdermal administration. Since caffeic acid is characterized by antioxidant potential but also high instability, its encapsulation appears to be an interesting strategy. Ethosomes were produced by adding water into a phosphatidylcholine ethanol solution under magnetic stirring. Size distribution and morphology of ethosome were investigated by photon correlation spectroscopy, small-angle X-ray spectroscopy, and cryogenic transmission electron microscopy, while the entrapment capacity of caffeic acid was evaluated by high-performance liquid chromatography. Caffeic acid stability in ethosome was compared to the stability of the molecule in water, determined by mass spectrometry. Ethosome dispersion was thickened by poloxamer 407, obtaining an ethosomal gel that was characterized for rheological behavior and deformability. Caffeic acid diffusion kinetics were determined by Franz cells, while its penetration through skin, as well as its antioxidant activity, were evaluated using a porcine skin membrane–covered biosensor based on oxygen electrode. Ethosome mean diameter was ≈200 nm and almost stable within three months. The entrapment of caffeic acid in ethosome dramatically prolonged drug stability with respect to the aqueous solution, being 77% w/w in ethosome after six months, while in water, an almost complete degradation occurred within one month. The addition of poloxamer slightly modified vesicle structure and size, while it decreased the vesicle deformability. Caffeic acid diffusion coefficients from ethosome and ethosome gel were, respectively, 137- and 33-fold lower with respect to the aqueous solution. At last, the caffeic acid permeation and antioxidant power of ethosome were more intense with respect to the simple solution.


Pharmaceutics ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 30
Author(s):  
Cristina Padula ◽  
Ian Pompermayer Machado ◽  
Aryane Alves Vigato ◽  
Daniele Ribeiro de Araujo

The aim of this work was to evaluate the ex vivo effect of the combination of two strategies, complexation with cyclodextrin, and poloxamer hydrogels, for improving water solubility in the dermal absorption of budesonide. Two hydrogels containing 20% poloxamer 407, alone or in combination with poloxamer 403, were prepared. Each formulation was loaded with 0.05% budesonide, using either pure budesonide or its inclusion complex with hydroxypropyl-β-cyclodextrin, and applied in finite dose conditions on porcine skin. The obtained results showed that for all formulations, budesonide accumulated preferentially in the epidermis compared to the dermis. The quantity of budesonide recovered in the receptor compartment was, in all cases, lower than the LOQ of the analytical method, suggesting the absence of possible systemic absorption. The use of a binary poloxamer mixture reduced skin retention, in line with the lower release from the vehicle. When the hydrogels were formulated with the inclusion complex, an increase in budesonide skin retention was observed with both hydrogels. Poloxamer hydrogel proved to be a suitable vehicle for cutaneous administration of budesonide.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 171
Author(s):  
Supandeep Hallan ◽  
Maddalena Sguizzato ◽  
Markus Drechsler ◽  
Paolo Mariani ◽  
Leda Montesi ◽  
...  

The object of this study is a comparison between solid lipid nanoparticles and ethosomes for caffeic acid delivery through the skin. Caffeic acid is a potent antioxidant molecule whose cutaneous administration is hampered by its low solubility and scarce stability. In order to improve its therapeutic potential, caffeic acid has been encapsulated within solid lipid nanoparticles and ethosomes. The effect of lipid matrix has been evaluated on the morphology and size distribution of solid lipid nanoparticles and ethosomes loaded with caffeic acid. Particularly, morphology has been investigated by cryogenic transmission electron microscopy and small angle X-ray scattering, while mean diameters have been evaluated by photon correlation spectroscopy. The antioxidant power has been evaluated by the 2,2-diphenyl-1-picrylhydrazyl methodology. The influence of the type of nanoparticulate system on caffeic acid diffusion has been evaluated by Franz cells associated to the nylon membrane, while to evaluate caffeic acid permeation through the skin, an amperometric study has been conducted, which was based on a porcine skin-covered oxygen electrode. This apparatus allows measuring the O2 concentration changes in the membrane induced by polyphenols and H2O2 reaction in the skin. The antioxidative reactions in the skin induced by caffeic acid administered by solid lipid nanoparticles or ethosomes have been evaluated. Franz cell results indicated that caffeic acid diffusion from ethosomes was 18-fold slower with respect to solid lipid nanoparticles. The amperometric method evidenced the transdermal delivery effect of ethosome, indicating an intense antioxidant activity of caffeic acid and a very low response in the case of SLN. Finally, an irritation patch test conducted on 20 human volunteers demonstrated that both ethosomes and solid lipid nanoparticles can be safely applied on the skin.


2021 ◽  
pp. 113831
Author(s):  
Vincent Gauthier ◽  
Alice Lemarquand ◽  
Emmanuel Caplain ◽  
Nicolas Wilkie-Chancellier ◽  
Stéphane Serfaty

2021 ◽  
Author(s):  
Shreya Kaul ◽  
Upendra Nagaich ◽  
Navneet Verma

Abstract The research work was driven to develop novel nanostructured liquid crystalline particles of vancomycin for its improved pre-ocular residence time, ocular bio-availability, enhanced targeting, increased permeability, reduced dosing frequency, controlled drug release and reduced systemic side-effects. Formulation was developed by fragmenting cubic crystalline phase of glycerol monooleate, water and poloxamer 407. A four-factor, three-level Taguchi statistical experimental design was constructed to optimize the formulation. Formulations exhibited internal-cubic structure of the vesicles with particle size in the range of 51.11 ± 0.96 nm to 158.73 ± 0.46 nm and negative zeta potential. Ex-vivo transcorneal permeation studies demonstrated that the optimized cubosomes had 2.4-fold increase in apparent permeability co-efficient as compared to vancomycin solution. Whereas, in-vivo studies in rabbits demonstrated that the severity of keratitis was considerably lowered in day 3 with optimized cubosomes. Ocular pharmacokinetic studies evaluated level of drug in aqueous humor and results revealed that the time to peak concentration (Tmax) of vancomycin loaded cubosomal formulation was about 1.9-fold higher and mean residence time was 2.2-fold greater than vancomycin solution. Furthermore, histological examination revealed that the corneal layers displayed well-maintained morphology without any stromal swelling, consequently indicating safety of formulation. In conclusion, results manifested that the developed vancomycin loaded cubosomes could be a promising novel ocular carrier and an ideal substitute for conventional eye-drops for the management of bacterial-keratitis.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3171 ◽  
Author(s):  
Alejandro Lucia ◽  
Ariel Ceferino Toloza ◽  
Eduardo Guzmán ◽  
Francisco Ortega ◽  
Ramón G. Rubio

BackgroundEssential oil components (EOCs) are molecules with interesting application in pest control, these have been evaluated against different insect pest from more than 100 years, but their practical use is rather limited. Thus, the enhancement of their bioavailability and manageability due to their dispersion in water can open new perspective for the preparation of formulations for the control of insect pest. In this work, we studied the encapsulation of different monoterpenes in a poloxamer shell in order to prepare aqueous formulations that can be used for the development of platforms used in pest control.MethodsMicellar systems containing a 5 wt% of poloxamer 407 and 1.25 wt% of the different monoterpenes were prepared. Dynamic Light Scattering (DLS) experiments were carried out to characterize the dispersion of the EOCs in water. The pediculicidal activity of these micellar systems was tested on head lice using anex vivoimmersion test.ResultsThe poloxamers allowed the dispersion of EOCs in water due to their encapsulation inside the hydrophobic core of the copolymer micelles. From this study, we concluded that it is possible to make stable micellar systems containing water (>90 wt%), 1.25 wt% of different monoterpenes and a highly safe polymer (5wt% Poloxamer 407). These formulations were effective against head lice with mortality ranging from 30 to 60%, being the most effective emulsions those containing linalool, 1,8-cineole,α-terpineol, thymol, eugenol, geraniol and nonyl alcohol which lead to mortalities above 50%.DiscussionSince these systems showed good pediculicidal activity and high physicochemical stability, they could be a new route for the green fabrication of biocompatible and biosustainable insecticide formulations.


2014 ◽  
Vol 30 (9) ◽  
pp. 700-708 ◽  
Author(s):  
Sumeyya Akyol ◽  
Veli Ugurcu ◽  
Mehmet Balci ◽  
Ayse Gurel ◽  
Gonul Erden ◽  
...  

2021 ◽  
Vol 14 ◽  
Author(s):  
Sarbjot Kaur ◽  
Ujjwal Nautiyal ◽  
Pooja A. Chawla ◽  
Viney Chawla

Background: Background: Olanzapine belongs to a new class of dual spectrum antipsychotic agents. It is known to show promise in managing both the positive and negative symptoms of schizophrenia. Drug delivery systems based on nanostructured lipid carriers (NLC) are expected to provide rapid nose-to-brain transport of this drug and improved distribution into and within the brain. Objective: The present study deals with the preparation and evaluation of olanzapine loaded NLC via the intranasal route for schizophrenia. Methods: Olanzapine-NLC were formulated through the solvent injection method using isopropyl alcohol as the solvent, stearic acid as solid lipid, and oleic acid as liquid lipid, chitosan as a coating agent, and Poloxamer 407 as a surfactant. NLC were characterized for particle size, polydispersity index, entrapment efficiency, pH, viscosity, X-ray diffraction studies, in-vitro mucoadhesion study, in- vitro release and ex-vivo permeation studies. The shape and surface morphology of the prepared NLC was determined through transmission electron microscopy. To detect the interaction of the drug with carriers, compatibility studies were also carried out. Results: Average size and polydispersity index of developed formulation S6 was 227.0±6.3 nm and 0.460 respectively. The encapsulation efficiency of formulation S6 was found to be 87.25 %. The pH, viscosity, in-vitro mucoadhesion study, and in- vitro release of optimized olanzapine loaded NLC were recorded as 5.7 ± 0.05, 78 centipoise, 15±2 min, and 91.96 % respectively. In ex-vivo permeation studies, the percent drug permeated after 210 min was found to be 84.03%. Conclusion: These results reveal potential application of novel olanzapine-NLC in intranasal drug delivery system for treatment of schizophrenia.


INDIAN DRUGS ◽  
2017 ◽  
Vol 54 (09) ◽  
pp. 83-85
Author(s):  
A Ambavkar ◽  
◽  
N. Desai

The objective of the study was to develop and evaluate nanolipid carriers based in situ gel of Carbamazepine, for brain delivery through intranasal route. The non – invasive nasal route can provide rapid delivery of drugs directly to the central nervous system by bypassing the blood brain barrier. The nanolipid carriers of carbamazepine as in situ nasal gel can prolong the drug release for control of repetitive seizures and were prepared by Phase Inversion Temperature technique. The retention of the carriers in the nasal cavity was improved by using Poloxamer 407 as thermoresponsive and Carbopol 974P as mucoadhesive gelling polymers, respectively. The developed gel was evaluated for particle size, polydispersity index, zeta potential, morphology, entrapment efficiency, mucoadhesive and thermoresponsive behaviour, in vitro drug release, ex vivo permeation and nasociliotoxicity. The gel showed sustained release over prolonged periods and was found to be non-toxic to the sheep nasal mucosa.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Merly de Armas-Ricard ◽  
Enrique Ruiz-Reyes ◽  
Oney Ramírez-Rodríguez

Polyphenols are secondary metabolites of plants and include a variety of chemical structures, from simple molecules such as phenolic acids to condensed tannins and highly polymerized compounds. Caffeic acid (3,4-dihydroxycinnamic acid) is one of the hydroxycinnamate metabolites more widely distributed in plant tissues. It is present in many food sources, including coffee drinks, blueberries, apples, and cider, and also in several medications of popular use, mainly those based on propolis. Its derivatives are also known to possess anti-inflammatory, antioxidant, antitumor, and antibacterial activities, and can contribute to the prevention of atherosclerosis and other cardiovascular diseases. This review is an overview of the available information about the chemical synthesis and antioxidant activity of caffeic acid derivatives. Considering the relevance of these compounds in human health, many of them have been the focus of reviews, taking as a center their obtaining from the plants. There are few revisions that compile the chemical synthesis methods, in this way, we consider that this review does an important contribution.


Sign in / Sign up

Export Citation Format

Share Document