scholarly journals A Novel Design of a 3D Racetrack Memory Based on Functional Segments in Cylindrical Nanowire Arrays

Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2403
Author(s):  
Javier Rial ◽  
Mariana P. Proenca

A racetrack memory is a device where the information is stored as magnetic domains (bits) along a nanowire (track). To read and record the information, the bits are moved along the track by current pulses until they reach the reading/writing heads. In particular, 3D racetrack memory devices use arrays of vertically aligned wires (tracks), thus enhancing storage density. In this work, we propose a novel 3D racetrack memory configuration based on functional segments inside cylindrical nanowire arrays. The innovative idea is the integration of the writing element inside the racetrack itself, avoiding the need to implement external writing heads next to the track. The use of selective magnetic segments inside one nanowire allows the creation of writing and storage sections inside the same track, separated by chemical constraints identical to those separating the bits. Using micromagnetic simulations, our study reveals that if the writing section is composed of two segments with different coercivities, one can reverse its magnetization independently from the rest of the memory device by applying an external magnetic field. Spin-polarized current pulses then move the information bits along selected tracks, completing the writing process by pushing the new bit into the storage section of the wire. Finally, we have proven the efficacy of this system inside an array of 7 nanowires, opening the possibility to use this configuration in a 3D racetrack memory device composed of an array of thousands of nanowires produced by low-cost and high-yield template-electrodeposition methods.

2021 ◽  
Vol 9 ◽  
Author(s):  
Ji-Pei Chen ◽  
Jia-Qiang Lin ◽  
Xiao Song ◽  
Yuan Chen ◽  
Zhi-Feng Chen ◽  
...  

Magnetic skyrmion in chiral magnet exhibits a variety of unique topological properties associated with its innate topological structure. This inspires a number of ongoing searching for new topological magnetic textures. In this work, we used micromagnetic simulations and Monte Carlo simulations to investigate an exotic Néel-type magnetic kinks in square-shaped nanostructures of chiral magnets, which performs rather stably in the absence of magnetic field. The individual magnetic kink can reside in one of the four possible corners, and carry possibly upward or downward core polarity, constituting eight degenerate states. In addition, these kinks also exhibit unique behaviors of generation, stability and dynamics, as revealed by micromagnetic simulations. It was found that such kinks can be created, annihilated, displaced, and polarity-reversed on demand by applying a spin-polarized current pulse, and are easily switchable among the eight degenerate states. In particularly, the kinks can be switched toward the ferromagnetic-like states and backward reversibly by applying two successive current pulses, indicating the capability of writing and deleting the kink structures. These findings predict the existence of Néel-type magnetic kinks in the square-shaped nanostructures, as well as provide us a promising approach to tailor the kinks by utilizing the corners of the nanostructures, and control these states by spin-polarized currents. The present work also suggests a theoretical guide to explore other chiral magnetic textures in nanostructures of polygon geometries.


2019 ◽  
Vol 16 (8) ◽  
pp. 676-682
Author(s):  
Ankusab Noorahmadsab Nadaf ◽  
Kalegowda Shivashankar

The polycyclic dihydropyridine nucleus represents the heterocyclic system of invaluable core motifs with wide applications in chemical, biological and physical properties. Although this kind of compounds have been extensively synthesized by other groups, the synthesis of these compounds under CFL light intensity were not explored. The synthesis of polycyclic dihydropyridine derivatives were achieved through the reaction of 4-hydroxycoumarin, aromatic aldehydes and ammonium acetate under CFL light irradiation conditions. A series of polycyclic dihydropyridine derivatives were prepared under CFL light irradiation conditions with high yield, short reaction time, ambient condition and without the use of catalyst. The results displayed an efficient method for the synthesis of polycyclic dihydropyridine derivatives. Clean profile, short reaction time, low cost and use of CFL light intensity instead of catalyst making it a genuinely green protocol.


2019 ◽  
Vol 9 (2) ◽  
pp. 157-160
Author(s):  
Ali Hasani

Background: Laser ablation method has high-yield and pure SWCNHs. On the other hand, arc discharge methods have low-cost production of SWCNHs. However, these techniques have more desirable features, they need special expertness to use high power laser or high current discharge that either of them produces very high temperature. As for the researches, the temperatures of these techniques are higher than 4727°C to vaporize the graphite. So, to become aware of the advantages of SWCNHs, it is necessary to find a new way to synthesize SWCNHs at a lower temperature. In other words, reaction field can be expandable at a moderate temperature. This paper reports a new way to synthesize SWCNHs at an extremely reduced temperature. Methods: According to this study, the role of N2 is the protection of the copper holder supporting the graphite rod by increasing heat transfer from the holder. After the current of 70 A was supplied to the system, the temperature of graphite rod was raised to 1600°C. It is obvious that this temperature is somehow higher than the melting point of palladium, 1555°C, and much lower than graphite melting point, 3497°C. Results: Based on the results, there are transitional precursors simultaneous with the SWCNHs. This composition can be created by distortion of the primary SWCNTs at the higher temperature. Subsequently, each SWCNTs have a tendency to be broken into individual horns. With increasing the concentration of the free horns, bud-like SWCNHs can be produced. Moreover, there are individual horns almost separated from the mass of single wall carbon nanohorns. This structure is not common in SWCNHs synthesized by the usual method such as arc discharge or laser ablation. Through these regular techniques, SWCNHs are synthesized as cumulative particles with diameters about 30-150 nm. Conclusion: A simple heating is needed for SWCNTs transformation to SWCNHs with the presence of palladium as catalyst. The well-thought-out mechanism for this transformation is that SWCNTs were initially changed to highly curled shape, and after that were formed into small independent horns. The other rout to synthesize SWCNHs is the pyrolysis of palm olein at 950°C with the assistance of zinc nitrate and ferrocene. Palm olein was used as a promising, bio-renewable and inexpensive carbon source for the production of carbon nanohorns.


2021 ◽  
Vol 22 (3) ◽  
pp. 1124
Author(s):  
Mafalda Giovanna Reccia ◽  
Floriana Volpicelli ◽  
Eirkiur Benedikz ◽  
Åsa Fex Svenningsen ◽  
Luca Colucci-D’Amato

Neural stem cells represent a powerful tool to study molecules involved in pathophysiology of Nervous System and to discover new drugs. Although they can be cultured and expanded in vitro as a primary culture, their use is hampered by their heterogeneity and by the cost and time needed for their preparation. Here we report that mes-c-myc A1 cells (A1), a neural cell line, is endowed with staminal properties. Undifferentiated/proliferating and differentiated/non-proliferating A1 cells are able to generate neurospheres (Ns) in which gene expression parallels the original differentiation status. In fact, Ns derived from undifferentiated A1 cells express higher levels of Nestin, Kruppel-like factor 4 (Klf4) and glial fibrillary protein (GFAP), markers of stemness, while those obtained from differentiated A1 cells show higher levels of the neuronal marker beta III tubulin. Interestingly, Ns differentiation, by Epidermal Growth Factors (EGF) and Fibroblast Growth Factor 2 (bFGF) withdrawal, generates oligodendrocytes at high-yield as shown by the expression of markers, Galactosylceramidase (Gal-C) Neuron-Glial antigen 2 (NG2), Receptor-Interacting Protein (RIP) and Myelin Basic Protein (MBP). Finally, upon co-culture, Ns-A1-derived oligodendrocytes cause a redistribution of contactin-associated protein (Caspr/paranodin) protein on neuronal cells, as primary oligodendrocytes cultures, suggesting that they are able to form compact myelin. Thus, Ns-A1-derived oligodendrocytes may represent a time-saving and low-cost tool to study the pathophysiology of oligodendrocytes and to test new drugs.


2021 ◽  
pp. 2101036
Author(s):  
Hengyi Lu ◽  
Wen Shi ◽  
Fei Zhao ◽  
Wenjing Zhang ◽  
Peixin Zhang ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2910
Author(s):  
Chaoyi Ding ◽  
Chun Liu ◽  
Ligang Zhang ◽  
Di Wu ◽  
Libin Liu

The high cost of development and raw materials have been obstacles to the widespread use of titanium alloys. In the present study, the high-throughput experimental method of diffusion couple combined with CALPHAD calculation was used to design and prepare the low-cost and high-strength Ti-Al-Cr system titanium alloy. The results showed that ultra-fine α phase was obtained in Ti-6Al-10.9Cr alloy designed through the pseudo-spinodal mechanism, and it has a high yield strength of 1437 ± 7 MPa. Furthermore, application of the 3D strength model of Ti-6Al-xCr alloy showed that the strength of the alloy depended on the volume fraction and thickness of the α phase. The large number of α/β interfaces produced by ultra-fine α phase greatly improved the strength of the alloy but limited its ductility. Thus, we have demonstrated that the pseudo-spinodal mechanism combined with high-throughput diffusion couple technology and CALPHAD was an efficient method to design low-cost and high-strength titanium alloys.


Nanophotonics ◽  
2020 ◽  
Vol 9 (15) ◽  
pp. 4497-4503
Author(s):  
Liying Zhang ◽  
Xiangqian Xiu ◽  
Yuewen Li ◽  
Yuxia Zhu ◽  
Xuemei Hua ◽  
...  

AbstractVertically aligned nanowire arrays, with high surface-to-volume ratio and efficient light-trapping absorption, have attracted much attention for photoelectric devices. In this paper, vertical β-Ga2O3 nanowire arrays with an average diameter/height of 110/450 nm have been fabricated by the inductively coupled plasma etching technique. Then a metal-semiconductor-metal structured solar-blind photodetector (PD) has been fabricated by depositing interdigital Ti/Au electrodes on the nanowire arrays. The fabricated β-Ga2O3 nanowire PD exhibits ∼10 times higher photocurrent and responsivity than the corresponding film PD. Moreover, it also possesses a high photocurrent to dark current ratio (Ilight/Idark) of ∼104 and a ultraviolet/visible rejection ratio (R260 nm/R400 nm) of 3.5 × 103 along with millisecond-level photoresponse times.


2021 ◽  
Vol 125 (8) ◽  
pp. 4860-4868
Author(s):  
Zhaojun Zhang ◽  
Klara Suchan ◽  
Jun Li ◽  
Crispin Hetherington ◽  
Alexander Kiligaridis ◽  
...  

2015 ◽  
Vol 44 (3) ◽  
pp. 1039-1045 ◽  
Author(s):  
Mohammad Mahdi Najafpour ◽  
Emad Amini
Keyword(s):  
Low Cost ◽  
Mn Oxide ◽  

Nanolayered Mn oxides have been prepared by a very simple, low-cost and high-yield method using soap, KOH, MnCl2and H2O2.


Sign in / Sign up

Export Citation Format

Share Document