scholarly journals Surface Nanostructuring during Selective Area Epitaxy of Heterostructures with InGaAs QWs in the Ultra-Wide Windows

Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 11
Author(s):  
Viktor Shamakhov ◽  
Dmitriy Nikolaev ◽  
Sergey Slipchenko ◽  
Evgenii Fomin ◽  
Alexander Smirnov ◽  
...  

Selective area epitaxy (SAE) is widely used in photonic integrated circuits, but there is little information on the use of this technique for the growth of heterostructures in ultra-wide windows. Samples of heterostructures with InGaAs quantum wells (QWs) on GaAs (100) substrates with a pattern of alternating stripes (100-μm-wide SiO2 mask/100-μm-wide window) were grown using metalorganic chemical vapour deposition (MOCVD). It was found that due to a local change in the growth rate of InGaAs QW in the window, the photoluminescence (PL) spectra measured from the edge to the center of the window exhibited maximum blueshifts of 14 and 19 meV at temperatures of 80 K and 300 K, respectively. Using atomic force microscopy, we have demonstrated that the surface morphologies of structures grown using standard epitaxy or SAE under identical MOCVD growth conditions correspond to a step flow growth with a step height of ~1.5 ML or a step bunching growth mode, respectively. In the structures grown with the use of SAE, a strong variation in the surface morphology in an ultra-wide window from its center to the edge was revealed, which is explained by a change in the local misorientation of the layer due to a local change in the growth rate over the width of the window.

1992 ◽  
Vol 279 ◽  
Author(s):  
E. Ho ◽  
G. A. Coronado ◽  
L. A. Kolodziejski

ABSTRACTPhoto-assisted epitaxy is a versatile growth technique which allows in situ modification of surface chemical reactions. Under appropriate growth conditions the surface stoichiometry can be tuned by selectively desorbing surface species, or by decomposing particular molecular species, or by affecting the reaction rate constant of a chemical process. A potential application of laser-assisted growth rate enhancement or growth rate retardation is in the area of maskless selective area epitaxy. We have investigated the effect of photons on the growth of ZnSe by solid and gaseous source molecular beam epitaxy using various combination of sources. Significant growth rate enhancement (up to 20x), as well as growth rate suppression (as much as 70%), have been observed depending on the sources employed. In all cases, the laser power density remained low (∼200 mW/cm2), and the creation of photo-generated carriers was found to be required. An electron beam incident to the surface has a similar effect and increased the growth rate.


Crystals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 57
Author(s):  
Monica Bollani ◽  
Alexey Fedorov ◽  
Marco Albani ◽  
Sergio Bietti ◽  
Roberto Bergamaschini ◽  
...  

We demonstrate the feasibility of growing GaAs nanomembranes on a plastically-relaxed Ge layer deposited on Si (111) by exploiting selective area epitaxy in MBE. Our results are compared to the case of the GaAs homoepitaxy to highlight the criticalities arising by switching to heteroepitaxy. We found that the nanomembranes evolution strongly depends on the chosen growth parameters as well as mask pattern. The selectivity of III-V material with respect to the SiO2 mask can be obtained when the lifetime of Ga adatoms on SiO2 is reduced, so that the diffusion length of adsorbed Ga is high enough to drive the Ga adatoms towards the etched slits. The best condition for a heteroepitaxial selective area epitaxy is obtained using a growth rate equal to 0.3 ML/s of GaAs, with a As BEP pressure of about 2.5 × 10−6 torr and a temperature of 600 °C.


2009 ◽  
Vol 1202 ◽  
Author(s):  
Wen Feng ◽  
Vladimir Kuryatkov ◽  
Dana Rosenbladt ◽  
Nenad Stojanovic ◽  
Mahesh Pandikunta ◽  
...  

AbstractWe report selective area epitaxy of InGaN/GaN micron-scale stripes and rings on patterned (0001) AlN/sapphire. The objective is to elevate indium incorporation for achieving blue and green emission on semi-polar crystal facets. In each case, GaN structures were first produced, and the InGaN quantum wells (QWs) were subsequently grown. The pyramidal InGaN/GaN stripe along the <11-20> direction has uniform CL emission at 500 nm on the smooth {1-101} sidewall and at 550 nm on the narrow ridge. In InGaN/GaN triangular rings, the structures reveal smooth inner and outer sidewall facets falling into a single type of {1-101} planes. All these {1-101} sidewall facets demonstrate similar CL spectra which appear to be the superposition of two peaks at positions 500 nm and 460 nm. Spatially matched striations are observed in the CL intensity images and surface morphologies of the {1-101} sidewall facets. InGaN/GaN hexagonal rings are comprised of {11-22} and {21-33} facets on inner sidewalls, and {1-101} facets on outer sidewalls. Distinct CL spectra with peak wavelengths as long as 500 nm are observed for these diverse sidewall facets of the hexagonal rings.


2019 ◽  
Vol 52 (3) ◽  
pp. 637-642 ◽  
Author(s):  
Jiang-Dong Gao ◽  
Jian-Li Zhang ◽  
Xin Zhu ◽  
Xiao-Ming Wu ◽  
Chun-Lan Mo ◽  
...  

The growth mechanism of V-defects in GaN films was investigated. It was observed that the crystal faces of both the sidewall of a V-defect and the sidewall of the GaN film boundary belong to the same plane family of \{ {{{10\bar 11}}} \}, which suggests that the formation of the V-defect is a direct consequence of spontaneous growth like that of the boundary facet. However, the growth rate of the V-defect sidewall is much faster than that of the boundary facet when the V-defect is filling up, implying that lateral growth of \{ {{{10\bar 11}}} \} planes is not the direct cause of the change in size of V-defects. Since V-defects originate from dislocations, an idea was proposed to correlate the growth of V-defects with the presence of dislocations. Specifically, the change in size of the V-defect is determined by the growth rate around dislocations and the growth rate around dislocations is determined by the growth conditions.


1993 ◽  
Vol 300 ◽  
Author(s):  
H. Temkin ◽  
R. A. Hamm ◽  
A. Feygenson ◽  
M. A. Cotta ◽  
L. R. Harriott ◽  
...  

ABSTRACTWe discuss the characteristics of MOMBE based selective area epitaxy useful in the preparation of optoelectronic devices. Selective area epitaxy, a process in which epitaxy is restricted only to the areas opened in a suitably prepared dielectric mask, offers a powerful method of preparing high performance devices, varying the thickness and composition of the grown layers simply by controlling the width of the open areas and monolithically integrating different device types on common substrates. Lasers, heterostructure bipolar transistors, and optoelectronic integrated circuits based on InGaAs/InP system and relying on selective area epitaxy are described.


1996 ◽  
Vol 11 (5) ◽  
pp. 735-740 ◽  
Author(s):  
R W Martin ◽  
S L Wong ◽  
D M Symons ◽  
R J Nicholas ◽  
M A Gibbon ◽  
...  

1995 ◽  
Vol 397 ◽  
Author(s):  
J.C. Roberts ◽  
K.S. Boutros ◽  
S.M. Bedair

ABSTRACTDirect writing of GaAs optical waveguides has been achieved by laser assisted chemical vapor deposition (LCVD). The multimode waveguides have gaussian-like cross sections, smooth surfaces, and exhibit losses as low as 5.4 dB/cm. The LCVD technique offers the capability of maskless in situ selective epitaxial growth of diverse multilayer structures, and is therefore a novel alternative for the monolithic integration of optoelectronic integrated circuits.


Sign in / Sign up

Export Citation Format

Share Document