scholarly journals Ultra-Narrow Metallic Nano-Trenches Realized by Wet Etching and Critical Point Drying

Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 783
Author(s):  
Jeeyoon Jeong ◽  
Hyosim Yang ◽  
Seondo Park ◽  
Yun Daniel Park ◽  
Dai-Sik Kim

A metallic nano-trench is a unique optical structure capable of ultrasensitive detection of molecules, active modulation as well as potential electrochemical applications. Recently, wet-etching the dielectrics of metal–insulator–metal structures has emerged as a reliable method of creating optically active metallic nano-trenches with a gap width of 10 nm or less, opening a new venue for studying the dynamics of nanoconfined molecules. Yet, the high surface tension of water in the process of drying leaves the nano-trenches vulnerable to collapsing, limiting the achievable width to no less than 5 nm. In this work, we overcome the technical limit and realize metallic nano-trenches with widths as small as 1.5 nm. The critical point drying technique significantly alleviates the stress applied to the gap in the drying process, keeping the ultra-narrow gap from collapsing. Terahertz spectroscopy of the trenches clearly reveals the signature of successful wet etching of the dielectrics without apparent damage to the gap. We expect that our work will enable various optical and electrochemical studies at a few-molecules-thick level.

1998 ◽  
Vol 536 ◽  
Author(s):  
O. Resto ◽  
L. F. Fonseca ◽  
S. Z. Weisz ◽  
A. Many ◽  
Y. Goldstein

AbstractWe investigated the plasmon characteristics on luminescent porous silicon using electron energy loss spectroscopy. The samples were prepared from p-type crystalline silicon, (100) face, using the conventional electrochemical etching technique with the usual solution of HF, ethanol and water, followed by a critical point drying process. The energy of the bulk plasmon was measured both before and after sputter cleaning the sample with argon-ion bombardment. We found that initially the plasmon energy was slightly higher, ∼18 eV, than the plasmon energy of crystalline silicon. After sputter cleaning the sample with 5 keV Ar+ ions, the plasmon energy increased to ∼20 eV. Exposure to the electron beam used for the measurements caused a slow upward shift of the plasmon energy as a function of time, toward a saturation energy of 22-23 eV, an energy close to the plasmon energy of SiC. Auger spectroscopy performed in parallel showed an increasing carbon coverage. We prepared also samples without ethanol in the etching solution and/or with no critical point drying. Samples that did not undergo the critical point drying process showed consistently a practically constant plasmon energy, with almost no change upon sputtering and/or exposure to the electron beam. On the other hand, samples that were prepared with or without ethanol but using the critical point drying process, showed an appreciable increase in the plasmon energy upon exposure to the electron beam.We conclude that traces of CO2, used in the critical point drying process, are stored in the pores of the porous silicon surface and serve as a source of carbon. Apparently, upon activation by argon bombardment or by the electron beam, the carbon interacts with the porous Si surface forming a carbon-silicon compound, most probably SiC.


Author(s):  
Charles TurnbiLL ◽  
Delbert E. Philpott

The advent of the scanning electron microscope (SCEM) has renewed interest in preparing specimens by avoiding the forces of surface tension. The present method of freeze drying by Boyde and Barger (1969) and Small and Marszalek (1969) does prevent surface tension but ice crystal formation and time required for pumping out the specimen to dryness has discouraged us. We believe an attractive alternative to freeze drying is the critical point method originated by Anderson (1951; for electron microscopy. He avoided surface tension effects during drying by first exchanging the specimen water with alcohol, amy L acetate and then with carbon dioxide. He then selected a specific temperature (36.5°C) and pressure (72 Atm.) at which carbon dioxide would pass from the liquid to the gaseous phase without the effect of surface tension This combination of temperature and, pressure is known as the "critical point" of the Liquid.


Author(s):  
B. K. Kirchoff ◽  
L.F. Allard ◽  
W.C. Bigelow

In attempting to use the SEM to investigate the transition from the vegetative to the floral state in oat (Avena sativa L.) it was discovered that the procedures of fixation and critical point drying (CPD), and fresh tissue examination of the specimens gave unsatisfactory results. In most cases, by using these techniques, cells of the tissue were collapsed or otherwise visibly distorted. Figure 1 shows the results of fixation with 4.5% formaldehyde-gluteraldehyde followed by CPD. Almost all cellular detail has been obscured by the resulting shrinkage distortions. The larger cracks seen on the left of the picture may be due to dissection damage, rather than CPD. The results of observation of fresh tissue are seen in Fig. 2. Although there is a substantial improvement over CPD, some cell collapse still occurs.Due to these difficulties, it was decided to experiment with cold stage techniques. The specimens to be observed were dissected out and attached to the sample stub using a carbon based conductive paint in acetone.


Author(s):  
T. G. Naymik

Three techniques were incorporated for drying clay-rich specimens: air-drying, freeze-drying and critical point drying. In air-drying, the specimens were set out for several days to dry or were placed in an oven (80°F) for several hours. The freeze-dried specimens were frozen by immersion in liquid nitrogen or in isopentane at near liquid nitrogen temperature and then were immediately placed in the freeze-dry vacuum chamber. The critical point specimens were molded in agar immediately after sampling. When the agar had set up the dehydration series, water-alcohol-amyl acetate-CO2 was carried out. The objectives were to compare the fabric plasmas (clays and precipitates), fabricskeletons (quartz grains) and the relationship between them for each drying technique. The three drying methods are not only applicable to the study of treated soils, but can be incorporated into all SEM clay soil studies.


Author(s):  
Linda M. Sicko ◽  
Thomas E. Jensen

The use of critical point drying is rapidly becoming a popular method of preparing biological samples for scanning electron microscopy. The procedure is rapid, and produces consistent results with a variety of samples. The preservation of surface details is much greater than that of air drying, and the procedure is less complicated than that of freeze drying. This paper will present results comparing conventional air-drying of plant specimens to critical point drying, both of fixed and unfixed material. The preservation of delicate structures which are easily damaged in processing and the use of filter paper as a vehicle for drying will be discussed.


Author(s):  
C.A. Baechler ◽  
W. C. Pitchford ◽  
J. M. Riddle ◽  
C.B. Boyd ◽  
H. Kanagawa ◽  
...  

Preservation of the topographic ultrastructure of soft biological tissues for examination by scanning electron microscopy has been accomplished in the past by using lengthy epoxy infiltration techniques, or dehydration in ethanol or acetone followed by air drying. Since the former technique requires several days of preparation and the latter technique subjects the tissues to great stress during the phase change encountered during air-drying, an alternate rapid, economical, and reliable method of surface structure preservation was developed. Turnbill and Philpott had used a fluorocarbon for the critical point drying of soft tissues and indicated the advantages of working with fluids having both moderately low critical pressures as well as low critical temperatures. Freon-116 (duPont) which has a critical temperature of 19. 7 C and a critical pressure of 432 psi was used in this study.


Author(s):  
B. Thompson ◽  
N. Sculov ◽  
R.E. Crang

The use of co-polymerized glutaraldehyde-carbohydrazide (GACH) was proposed for specimen preparation in scanning electron microscopy (SEM) as a means of avoiding dehydration in organic solvents, and to provide dimensionally stable biological specimens through a process of air-drying. It has been assumed that shrinkage of specimens prepared by the GACH technique should be less than that of conventionally-prepared material by critical point drying (CPD). In a previous study, Bell has reported significant shrinkage of whole cells for SEM. This report compares cell shrinkage in GACH and CPD preparations.Fibroblasts from newborn rats were grown on collagen-coated glass cover-slips (with alpha numeric grids etched onto the surface of the coverslips) in Eagle's minimum essential medium + 10% fetal calf serum for 7 d. (3). Using an inverted microscope with phase-contrast optics, micrographs were taken of the cultures in their live state and 1 h. after fixation with 2.5% glutaraldehyde in Dulbecco's phosphate buffered saline (Figs. 1 and 3).


Sign in / Sign up

Export Citation Format

Share Document