scholarly journals Fundamental Aspects and Comprehensive Review on Physical Properties of Chemically Grown Tin-Based Binary Sulfides

Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1955
Author(s):  
Sreedevi Gedi ◽  
Vasudeva Reddy Minnam Reddy ◽  
Tulasi Ramakrishna Reddy Kotte ◽  
Chinho Park ◽  
Woo Kyoung Kim

The rapid research progress in tin-based binary sulfides (SnxSy = o-SnS, c-SnS, SnS2, and Sn2S3) by the solution process has opened a new path not only for photovoltaics to generate clean energy at ultra-low costs but also for photocatalytic and thermoelectric applications. Fascinated by their prosperous developments, a fundamental understanding of the SnxSy thin film growth with respect to the deposition parameters is necessary to enhance the film quality and device performance. Therefore, the present review article initially delivers all-inclusive information such as structural characteristics, optical characteristics, and electrical characteristics of SnxSy. Next, an overview of the chemical bath deposition of SnxSy thin films and the influence of each deposition parameter on the growth and physical properties of SnxSy are interestingly outlined.

Alloy Digest ◽  
2015 ◽  
Vol 64 (2) ◽  

Abstract Boehler M333 Isoplast is a plastic mold steel with low levels of impurities to meet high gloss surfaces at low costs. This datasheet provides information on composition, physical properties, and elasticity. It also includes information on heat treating, machining, and joining. Filing Code: TS-729. Producer or source: Böhler Edelstahl GmbH & Company KG.


Author(s):  
Bochao Chen ◽  
Ming Liang ◽  
Qingzhao Wu ◽  
Shan Zhu ◽  
Naiqin Zhao ◽  
...  

AbstractThe development of sodium-ion (SIBs) and potassium-ion batteries (PIBs) has increased rapidly because of the abundant resources and cost-effectiveness of Na and K. Antimony (Sb) plays an important role in SIBs and PIBs because of its high theoretical capacity, proper working voltage, and low cost. However, Sb-based anodes have the drawbacks of large volume changes and weak charge transfer during the charge and discharge processes, thus leading to poor cycling and rapid capacity decay. To address such drawbacks, many strategies and a variety of Sb-based materials have been developed in recent years. This review systematically introduces the recent research progress of a variety of Sb-based anodes for SIBs and PIBs from the perspective of composition selection, preparation technologies, structural characteristics, and energy storage behaviors. Moreover, corresponding examples are presented to illustrate the advantages or disadvantages of these anodes. Finally, we summarize the challenges of the development of Sb-based materials for Na/K-ion batteries and propose potential research directions for their further development.


1981 ◽  
Vol 5 (8) ◽  
Author(s):  
A. Patel ◽  
R.C. Padhl ◽  
H. Labischinski

Cerâmica ◽  
2002 ◽  
Vol 48 (305) ◽  
pp. 38-42 ◽  
Author(s):  
M. I. B. Bernardi ◽  
E. J. H. Lee ◽  
P. N. Lisboa-Filho ◽  
E. R. Leite ◽  
E. Longo ◽  
...  

The synthesis of TiO2 thin films was carried out by the Organometallic Chemical Vapor Deposition (MOCVD) method. The influence of deposition parameters used during growth on the final structural characteristics was studied. A combination of the following experimental parameters was studied: temperature of the organometallic bath, deposition time, and temperature and substrate type. The high influence of those parameters on the final thin film microstructure was analyzed by scanning electron microscopy with electron dispersive X-ray spectroscopy, atomic force microscopy and X-ray diffraction.


2021 ◽  
Vol 42 (11) ◽  
pp. 112101
Author(s):  
Yuming Xue ◽  
Shipeng Zhang ◽  
Dianyou Song ◽  
Liming Zhang ◽  
Xinyu Wang ◽  
...  

Abstract Cd1– x Zn x S thin films were deposited by chemical bath deposition (CBD) on the glass substrate to study the influence of cadmium sulfate concentration on the structural characteristics of the thin film. The SEM results show that the thin film surfaces under the cadmium sulfate concentration of 0.005 M exhibit better compactness and uniformity. The distribution diagrams of thin film elements illustrate the film growth rate changes on the trend of the increase, decrease, and increase with the increase of cadmium sulfate concentration. XRD studies exhibit the crystal structure of the film is the hexagonal phase, and there are obvious diffraction peaks and better crystallinity when the concentration is 0.005 M. Spectrophotometer test results demonstrate that the relationship between zinc content x and optical band gap value E g can be expressed by the equation E g(x) = 0.59x 2 + 0.69x + 2.43. Increasing the zinc content can increase the optical band gap, and the absorbance of the thin film can be improved by decreasing the cadmium sulfate concentration, however, all of them have good transmittance. At a concentration of 0.005 M, the thin film has good absorbance in the 300–800 nm range, 80% transmittance, and band gap value of 3.24 eV, which is suitable for use as a buffer layer for solar cells.


2021 ◽  
Vol 25 ◽  
Author(s):  
Jian Chen ◽  
Mengjing Zhu ◽  
Fuwei Xianga ◽  
Junfeng Li ◽  
Hongjun Yang ◽  
...  

: In recent years, the development of the chemical industry has been moving in a green, safe and efficient direction. Oxidation reactions are one of the most important types of reaction, and have key applications in food, medicine, and cosmetics, petrochemicals. However, the occurrence of the oxidation reaction is accompanied by a strong exothermic phenomenon, and improper control can easily lead to safety problems and even explosions. The realization of an environmentally friendly oxidation reaction is a key industrial milestone. The unique structural characteristics of microreactors result in good mass and heat transfer performance, precise control of the reaction temperature, reduced risk of explosion, improved safety production and selectivity of products. These unique advantages of the microreactor determine its significant application value in oxidation reactions. In this paper, the research progress of several typical oxidation reactions including alkane oxidation, alcohol oxidation, aldosterone oxidation, aromatics oxidation and olefin oxidation combined with microreactors is reviewed systematically.


1994 ◽  
Vol 20 ◽  
pp. 61-66 ◽  
Author(s):  
A.L. Veazey ◽  
M.O. Jeffries ◽  
K. Morris

The small-scale variability of physical properties and structural characteristics of multiple pairs of fast-ice cores obtained during the austral summer of 1991-92 at two Antarctic sites, McMurdo Sound (MCM) and Pine Island Bay (PIB), are examined and discussed with respect to the growth and decay of the sea ice. The ice at the MCM site was thicker than that at the PIB site and was covered by a somewhat thinner snowpack. While mean salinity and temperature of the ice at the two sites were similar, small-scale variations in both salinity and temperature were greater at PIB than at MCM. The ice sheet at MCM was a two-layer medium consisting of congelation ice overlying platelet ice. The ice from the PIB site, however, was composed of mainly frazil ice and layers of congelation ice with occasional thin layers of snow-ice at the surface of the cores. Crystal sub-structure measurements, c-axis orientation and brine-layer spacing from the MCM cores revealed that the congelation ice had moderately aligned, horizontally oriented c axes, suggesting that east-west currents off the southwest tip of Hut Point Peninsula control crystal-growth orientation.d others: Variability of physical and structural characteristics of Antarctic fast ice


2004 ◽  
Vol 817 ◽  
Author(s):  
R. Clergereaux ◽  
D. Escaich ◽  
S. Martin ◽  
P. Raynaud ◽  
F. Gaillard

AbstractPlasma enhanced CVD produces carbon layers with various properties which are highly correlated to the different process parameters such as monomer structure, plasma type or plasma power. For example, the modification of monomer (CH4 to C4H10) or the plasma source and the increase of plasma power lead to an optical band-gap which runs from 0.9 to 4.3eV, a conductivity from 5·103 to 5·105S.m−1 and a refractive index from 1.47 to 2.76. Then, it is able to control the optical and electrical film properties from the external process parameters. This paper will thus be focused on the description of relation between deposition parameters, structural characteristics of material and film properties. These materials can then be used for optoelectronics applications.


1994 ◽  
Vol 361 ◽  
Author(s):  
William Jo ◽  
T.W. Noh

ABSTRACTUsing pulsed laser deposition, Bi4Ti3O12 thin films were grown on (0001) and (1102) surfaces of Al2O3. Substrate temperature from 700 to 800 °C and oxygen pressure from 50 to 1000 mtorr were varied, and their effects on Bi4Ti3O12 film growth behavior was investigated. Only for a narrow range of deposition parameters, can highly oriented Bi4Ti3O12(104) films be grown on Al2O3(0001). Further, epitaxial BTO(004) films can be grown on Al2O3(1102). The growth behavior of preferential BTO film orientations can be explained in terms of atomic arrangements in the Bi4Ti3O12 and the Al2O3 planes.


1984 ◽  
Vol 37 ◽  
Author(s):  
S. A. Barnett ◽  
B. Kramer ◽  
L. T. Romano ◽  
S. I. Shah ◽  
M. A. Ray ◽  
...  

AbstractRecent results on metastable semiconducting alloys, concerning in particular the growth of new Sn-based alloys (GaSb)1−x(Sn2)x and Gel−xSnx and the physical properties of (GaAs)1−x(Ge2)x and (GaSb)1−x(Ge2)x, are discussed. (GaSb)1−x(Sn2)x and Ge1−xSnx alloy films were grown with x-values as high as 0.20 and 0.15, respectively, well in excess of equilibrium Sn solid solubility limits (<1%) while epitaxial (GaAs)1−x(Ge2) and (GaSb)1−x(Ge2)x alloys were obtained on (100) GaAs at compositions ranging across the pseudobinary phase diagram. Low energy ion bombardment induced collisional mixing and preferential sputtering during film growth played a critical role in obtaining single phase alloys. An optimal ion energy, which depended on the ion flux and the alloy composition, was determined, allowing in most cases growth at temperatures T, sufficient for obtaining single crystal alloys on (100) GaAs and (100) Ge substrates. Decomposition of the Sn-based alloys occurred above a critical Ts- value via α-Sn-rich precipitates which were stable above the β-Sn melting point. X-ray diffraction, STEM, EXAFS, and Raman spectroscopy measurements, performed on single crystal (GaAs)1−x(Ge2)x and (GaSb)1−x(Ge2)x alloys, indicate that there is a transition in the long-range order from zincblende to diamond with increasing x while the short-range order remains perfect at all compositions, i.e. no V-V or III-Ill bonds are observed. These results are discussed in light of recent models which relate (GaAs)1−x(Ge2)x atomic structure to its band structure and optical properties.


Sign in / Sign up

Export Citation Format

Share Document