scholarly journals Obtaining Nanostructured ZnO onto Si Coatings for Optoelectronic Applications via Eco-Friendly Chemical Preparation Routes

Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2490
Author(s):  
Mirela Petruta Suchea ◽  
Evangelia Petromichelaki ◽  
Cosmin Romanitan ◽  
Maria Androulidaki ◽  
Alexandra Manousaki ◽  
...  

Although the research on zinc oxide (ZnO) has a very long history and its applications are almost countless as the publications on this subject are extensive, this semiconductor is still full of resources and continues to offer very interesting results worth publishing or warrants further investigation. The recent years are marked by the development of novel green chemical synthesis routes for semiconductor fabrication in order to reduce the environmental impacts associated with synthesis on one hand and to inhibit/suppress the toxicity and hazards at the end of their lifecycle on the other hand. In this context, this study focused on the development of various kinds of nanostructured ZnO onto Si substrates via chemical route synthesis using both classic solvents and some usual non-toxic beverages to substitute the expensive high purity reagents acquired from specialized providers. To our knowledge, this represents the first systematic study involving common beverages as reagents in order to obtain ZnO coatings onto Si for optoelectronic applications by the Aqueous Chemical Growth (ACG) technique. Moreover, the present study offers comparative information on obtaining nanostructured ZnO coatings with a large variety of bulk and surface morphologies consisting of crystalline nanostructures. It was revealed from X-ray diffraction analysis via Williamson–Hall plots that the resulting wurtzite ZnO has a large crystallite size and small lattice strain. These morphological features resulted in good optical properties, as proved by photoluminescence (PL) measurements even at room temperature (295 K). Good optical properties could be ascribed to complex surface structuring and large surface-to-volume ratios.

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Bünyamin Şahin

Nanostructured cadmium oxide (CdO) films were fabricated on glass substrates from alkaline baths containing saccharin as an additive by a successive ionic layer adsorption and reaction (SILAR) method. The effects of saccharin concentration in the bath on the structural, morphological, and optical properties were studied by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), photoluminescence, and Raman spectroscopy. The analyses showed that the surface morphologies, XRD peak intensities, Raman spectroscopy, and photoluminescence properties of CdO films changed with saccharin concentration. From the results, it can be said that morphological characteristic and optical properties of the films could be calibrated by adding various saccharin percentages in the growth bath.


2012 ◽  
Vol 486 ◽  
pp. 340-344
Author(s):  
Chun Hung Lai ◽  
Ching Fang Tseng ◽  
Wen Yu Hsu

This paper describes microstructure and optical characteristics of ZnO-doped CeO2thin films were deposited by sol-gel method with various preheating and annealing temperatures. Particular attention will be paid to the effects of an annealing treatment in air ambient on the physical properties. The deposited films were characterized using X-ray diffraction. The surface morphologies of annealed film were examined by scanning electron microscopy. Optical properties of the ZnO-doped CeO2thin films were obtained by UV-visible recording spectrophotometer. The dependence of the optical properties and microstructure characteristics on thermal treatment was also investigated.


2011 ◽  
Vol 18 (03n04) ◽  
pp. 121-125 ◽  
Author(s):  
Y. L. DING ◽  
X. H. ZHANG ◽  
C. H. YANG ◽  
X. Y. ZHANG ◽  
H. L. YANG

Both ferroelectric Na0.5Bi0.5TiO3 (NBT) and K0.5Bi0.5TiO3 (KBT) are considered as the best known lead-free materials. In this experiment, we prepared NBT and KBT thin films on Pt/TiO2/SiO2/Si substrates by metalorganic solution deposition. The structural properties and surface morphologies were measured using X-ray diffraction and atomic force microscopy. The NBT and KBT films show higher leakage currents due to the oxygen vacancies in the films. The remanent polarization and coercive field of NBT (KBT) thin film are 9 (5.2) μC/cm2 and 50 (25) kV/cm at an applied electric field of 150 kV/cm. The relative dielectric constants of NBT and KBT are 340 and 316 at 1 MHz, respectively.


2012 ◽  
Vol 512-515 ◽  
pp. 368-371
Author(s):  
Yan Chao Hou ◽  
Jian Feng Huang ◽  
Li Yun Cao ◽  
Jian Peng Wu

Sm2S3 thin films were prepared on Si (100) substrates by liquid phase self–assemble method. The influences of solution pH value on the phases, surface morphologies and optical properties of the as deposited films were investigated. The as–deposited Sm2S3 thin films were characterized by X–ray diffraction (XRD), atomic force microscopy (AFM) and ultraviolet-visible (UV–Vis). Results indicate that Sm2S3 thin film with oriented growth along (105) direction can be obtained at pH value of 3.0, deposition temperature of 80 °C, following deposition for 24 h. The grain sizes of the Sm2S3 first increase and then decrease with increasing pH value. The as–deposited thin films exhibit a dense and crystallinized surface morphology. The film shows good transmittance in visible spectrum and excellent absorbency of ultraviolet light, and the bandgap of the thin films at pH of 3.0 is calculated to be 4.06 eV.


1993 ◽  
Vol 302 ◽  
Author(s):  
T. J. de Lyon ◽  
S. M. Johnson ◽  
C. A. Cockrum ◽  
O. K. Wu ◽  
J. A. Roth

ABSTRACTEpitaxial films of ZnTe(100) and CdZnTe(100)/ZnTe(100) have been deposited by molecular-beam epitaxy onto Si(100) substrates misoriented from 0-8 degrees towards the [011] direction. The films were characterized with x ray diffraction, photoluminescence spectroscopy, optical microscopy, and stylus profilometry. Through use of ZnTe buffer layers, single crystal CdZnTe(100) films have been demonstrated on both 4° and 8° misoriented Si with structural quality comparable to that obtained with GaAs/Si composite substrates. X ray rocking curves for ZnTe(400) with FWHM less than 300 arcseconds and for CdZnTe(400) with FWHM less than 160 arcseconds have been obtained for as-grown films. The observed surface morphologies are superior to those obtained on GaAs/Si composite substrates. HgCdTe(100) films with x ray FWHM as low as 55 arcseconds and average etch pit densities of 5 x 106 cm−2 have been deposited by liquid phase epitaxy on these MBE CdZnTe/ZnTe/Si substrates.


1993 ◽  
Vol 8 (11) ◽  
pp. 2845-2857 ◽  
Author(s):  
Koichi Miyata ◽  
Kazuo Kumagai ◽  
Kozo Nishimura ◽  
Koji Kobashi

B-doped diamond films were synthesized by microwave plasma chemical vapor deposition using a mixture of methane (0.5% or 1.2%) and diborane (B2H6) below 50 ppm on either Si substrates or undoped diamond films that had been synthesized using 0.5% or 1.2% methane. The surface morphologies of the synthesized films were observed by Secondary Electron Microscopy, and the infrared absorption and Raman spectra were measured. It was found that when diborane concentration was low, B-doped films preferred (111) facets. On the other hand, high diborane concentrations resulted in a deposition of needle-like material that was identified as graphite by x-ray diffraction.


Electronics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 446 ◽  
Author(s):  
Ya-Fen Wei ◽  
Wen-Yaw Chung ◽  
Cheng-Fu Yang ◽  
Jei-Ru Shen ◽  
Chih-Cheng Chen

ZnO films with a thickness of ~200 nm were deposited on SiO2/Si substrates as the seed layer. Then Zn(NO3)2-6H2O and C6H12N4 containing different concentrations of Eu(NO3)2-6H2O or In(NO3)2-6H2O were used as precursors, and a hydrothermal process was used to synthesize pure ZnO as well as Eu-doped and In-doped ZnO nanowires at different synthesis temperatures. X-ray diffraction (XRD) was used to analyze the crystallization properties of the pure ZnO and the Eu-doped and In-doped ZnO nanowires, and field emission scanning electronic microscopy (FESEM) was used to analyze their surface morphologies. The important novelty in our approach is that the ZnO-based nanowires with different concentrations of Eu3+ and In3+ ions could be easily synthesized using a hydrothermal process. In addition, the effect of different concentrations of Eu3+ and In3+ ions on the physical and optical properties of ZnO-based nanowires was well investigated. FESEM observations found that the undoped ZnO nanowires could be grown at 100 °C. The third novelty is that we could synthesize the Eu-doped and In-doped ZnO nanowires at temperatures lower than 100 °C. The temperatures required to grow the Eu-doped and In-doped ZnO nanowires decreased with increasing concentrations of Eu3+ and In3+ ions. XRD patterns showed that with the addition of Eu3+ (In3+), the diffraction intensity of the (002) peak slightly increased with the concentration of Eu3+ (In3+) ions and reached a maximum at 3 (0.4) at%. We show that the concentrations of Eu3+ and In3+ ions have considerable effects on the synthesis temperatures and photoluminescence properties of Eu3+-doped and In3+-doped ZnO nanowires.


1994 ◽  
Vol 299 ◽  
Author(s):  
T. J. de Lyon ◽  
S. M. Johnson ◽  
C. A. Cockrum ◽  
O. K. Wu ◽  
J. A. Roth

AbstractEpitaxial films of ZnTe(100) and CdZnTe(100)/ZnTe(100) have been deposited by molecular-beam epitaxy onto Si(100) substrates misoriented from 0–8 degrees towards the [011] direction. The films were characterized with x ray diffraction, photoluminescence spectroscopy, optical microscopy, and stylus profilometry. Through use of ZnTe buffer layers, single crystal CdZnTe(100) films have been demonstrated on both 4° and 8° misoriented Si with structural quality comparable to that obtained with GaAs/Si composite substrates. X ray rocking curves for ZnTe(400) with FWHM less than 300 arcseconds and for CdZnTe(400) with FWHM less than 160 arcseconds have been obtained for as-grown films. The observed surface morphologies are superior to those obtained on GaAs/Si composite substrates. HgCdTe(100) films with x ray FWHM as low as 55 arcseconds and average etch pit densities of 5 × 106 cm−2 have been deposited by liquid phase epitaxy on these MBE CdZnTe/ZnTe/Si substrates.


2007 ◽  
Vol 1012 ◽  
Author(s):  
Jens Eberhardt ◽  
Heinrich Metzner ◽  
Rüdiger Goldhahn ◽  
Florian Hudert ◽  
Kristian Schulz ◽  
...  

AbstractUsing molecular beams, polycrystalline thin CuInS2 (CIS) films of different thicknesses were grown on Si substrates covered with a sputtered Mo-buffer layer. Systematic photoluminescence and photoreflectance measurements were performed to investigate the influence of strain - introduced during growth - on the optical properties. The transition energy of the free A-exciton (FXA) decreases with increasing tensile strain caused by (i) increasing thickness of the Mo buffer layer and (ii) decreasing thickness of the CIS layer. Furthermore, the energetic splittings between FXA, FXB, and FXC increase with increasing tensile strain. When combined with X-ray diffraction data, the oscillator strengths of the excitonic transitions yield information on the strain distribution within the films.


1994 ◽  
Vol 342 ◽  
Author(s):  
O.L. Russo ◽  
N.M. Ravindra ◽  
J.M. Grow ◽  
K.A. Dumas

ABSTRACTThe effect of furnace grown SiO2 layers on the optical properties of p- on p+ (100) Si substrates are investigated. The real part, n, of the complex refractive index n* = n + ik is calculated for radiation measured in the infra-red (IR) region between 3000 and 8000 cm−1 where the extinction coefficient, k, is negligible. The expression for n is obtained using the Fresnel coefficients for a three medium air-oxide-Si model. Strain in the silicon, which affects n, and caused by the stress in the SiO2 layer, increases with oxide thickness. X-ray diffraction (XRD) was used to measure the strain in Si for oxides layers ranging from native to 5124Å. The data showed a monotonically increasing normal compressive strain, εN (up to 0.47%) with oxide thickness, however, the corresponding change in n due to strain was not well defined. The effect of strain on the direct optical gap, Ed, at 3.46 eV when determined from results of other investigators by electroreflectance, suggests an average shift in Ed of about 25 meV.


Sign in / Sign up

Export Citation Format

Share Document