scholarly journals Atomistic Simulations on Metal Rod Penetrating Thin Target at Nanoscale Caused by High-Speed Collision

Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3160
Author(s):  
Yong-Chao Wu ◽  
Jin-Ming Liu ◽  
Wei Xie ◽  
Qing Yin ◽  
Jian-Li Shao

The penetration process has attracted increasing attention due to its engineering and scientific value. In this work, we investigate the deformation and damage mechanism about the nanoscale penetration of single-crystal aluminum nanorod with atomistic simulations, where distinct draw ratio (∅) and different incident velocities (up) are considered. The micro deformation processes of no penetration state (within 2 km/s) and complete penetration (above 3 km/s) are both revealed. The high-speed bullet can cause high pressure and temperature at the impacted region, promoting the localized plastic deformation and even solid-liquid phase transformation. It is found that the normalized velocity of nanorod reduces approximately exponentially during penetration (up < 3 km/s), but its residual velocity linearly increased with initial incident velocity. Moreover, the impact crater is also calculated and the corresponding radius is manifested in the linear increase trend with up while inversely proportional to the ∅. Interestingly, the uniform fragmentation is observed instead of the intact spallation, attributed to the relatively thin thickness of the target. It is additionally demonstrated that the number of fragments increases with increasing up and its size distribution shows power law damping nearly. Our findings are expected to provide the atomic insight into the micro penetration phenomena and be helpful to further understand hypervelocity impact related domains.

Author(s):  
J. Zhao ◽  
F. Tan ◽  
C. Liu ◽  
C. Sun

The near-earth space environment is cluttered with man-made debris and naturally occurring meteoroids, which is a big menace to the safety of satellites and spacecrafts. This paper is addressed on the failure response of aluminum shields under hypervelocity impact of milligrame level flyer. A compacted electric gun is employed to accelerate a mylar flyer up to 10 km/s. Failure response of Ly12 aluminum shields with different thickness and layers impacted by mylar flyer with different velocities is under investigation. The spallation is observed in the rear free surface of 4 mm thick monolithic aluminum shield, and its fracture mechanism changes from plastic to brittle when loading pressure is above 13 GPa. A perforation with a diameter 8 mm in the impacted area of the 4mm thick Ly12 shield is observed after which is impacted by 0.1 mm thick mylar flyer 8mm in diameter with velocity 8.2 km/s. When three layers of shields are impacted, the debris clouds (DC) are observed in the first and the second spaces respectively during the impact process by high speed camera, and its leftover can be observed on the surface of the third plate. The shape of the first debris cloud head is a little flat, and its speed of lateral expansion is very slow, which is different from those impacted by spherical projectile, and its formation mechanics mainly attributes to multi-spallations based on the analysis of simulation.


Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 697
Author(s):  
Luping Long ◽  
Yingbiao Peng ◽  
Wei Zhou ◽  
Wensheng Liu

An improved shielding structure of a bumper that constructed from Ti/Al/Mg density-graded materials was presented. Two types of Ti/Al/Mg density-graded materials with the same areal density were prepared by diffusion bonding and powder metallurgy, respectively. The characteristics of hypervelocity impact including penetration holes in the bumper, damage patterns on the rear wall and micrographs of the crater were investigated. The results show that damage mechanism of Ti/Al/Mg density-graded materials is closely related to the interface bonding strength and matrix strength. The penetration holes of Ti/Al/Mg density-graded material obtained by diffusion bonding exhibit typical ductile characteristics. The Ti/Al/Mg density-graded material prepared by powder metallurgy shows significant mechanical synergistic response under high strain compression and appears fragile characteristic. The shielding performance of Ti/Al/Mg bumper is increased by 20.4% compared with aluminum bumper. A theoretical analysis suggests that a Ti-Al-Mg bumper can fully break the projectile and greatly increase the entropy during the impact process. Larger projectile kinetic energy is converted into the internal energy during the impact process, thereby causing an obvious increase in shielding performance.


Author(s):  
Miao Yu ◽  
Xiying Li ◽  
Pengyu Lv ◽  
Huiling Duan

AbstractSolid–liquid composites (SLCs) with novel thermal/electronic/mechanical properties imparted by programmable and functional liquid inclusions have attracted considerable research interest in recent years, and are widely used in smart electronics and soft robotics. The feasible application of SLCs requires that they exhibit excellent static physical properties as well as dynamic impact resistance to satisfy complex service conditions, such as drops and impacts. This paper examined the impact resistance of SLCs fabricated by using microfluidic 3D printing. The results of dynamic split-Hopkinson pressure bar (SHPB) tests showed that the performance of the fabricated SLCs improved in terms of energy dissipation and impact resistance compared with pristine materials. In case of dynamic impact in the strain rates ranging from 100 to $$400\,\hbox {s}^{-1}$$ 400 s - 1 , the SLC specimen deformed without fracture, and its energy dissipation was dominated by the viscosity of the liquid inclusions. For dynamic impact in the strain rates ranging from 500 to $$800\,\hbox {s}^{-1}$$ 800 s - 1 , the SLC specimen fractured and its energy dissipation was determined by the volume fraction of the liquid inclusions. Thus, the energy dissipation of the SLCs could be tuned by regulating the viscosity and volume fraction of the liquid inclusions to satisfy the requirements of protection against different strain rates. Furthermore, the process of fracture of the SLCs under the dynamic SHPB tests was recorded and analyzed by using a high-speed camera. The results showed that distributed liquid inclusions changed the paths of crack propagation to enhance energy dissipation in the SLCs. This study experimentally verified the enhancement in the energy dissipation of SLCs, and provided design strategies for developing multifunctional SLCs with high impact resistance.


Author(s):  
Cheng Yan ◽  
Wei Chen ◽  
Zhenhua Zhao

When sand is ingested by a helicopter engine, it collides with the compressor blades at a high relative speed, causing severe erosion damage. A test was conducted on the high-speed impact of sand particles on the target of Ti–6Al–4 V alloy to enhance the understanding of high-speed impact damage mechanism. The test apparatus was used to create supersonic airflow, which was produced by normal temperature air flowing through a special Laval nozzle. The supersonic airflow produced the drag force to increase the velocity of sand particles up to about 400 m/s. The experiment demonstrated that fractured sand particle caused less damage than nonfractured particle under similar impact conditions. The nonfractured particle directly cut the target more easily than the fractured at a relatively low impact velocity. When the impact speed exceeded 300 m/s, the crater depth increased exponentially with the increase of velocity. Impact angle determined the mode of material failure.


2008 ◽  
Vol 36 (3) ◽  
pp. 211-226 ◽  
Author(s):  
F. Liu ◽  
M. P. F. Sutcliffe ◽  
W. R. Graham

Abstract In an effort to understand the dynamic hub forces on road vehicles, an advanced free-rolling tire-model is being developed in which the tread blocks and tire belt are modeled separately. This paper presents the interim results for the tread block modeling. The finite element code ABAQUS/Explicit is used to predict the contact forces on the tread blocks based on a linear viscoelastic material model. Special attention is paid to investigating the forces on the tread blocks during the impact and release motions. A pressure and slip-rate-dependent frictional law is applied in the analysis. A simplified numerical model is also proposed where the tread blocks are discretized into linear viscoelastic spring elements. The results from both models are validated via experiments in a high-speed rolling test rig and found to be in good agreement.


2020 ◽  
Vol 68 (4) ◽  
pp. 303-314
Author(s):  
Yuna Park ◽  
Hyo-In Koh ◽  
University of Science and Technology, Transpo ◽  
University of Science and Technology, Transpo ◽  
University of Science and Technology, Transpo ◽  
...  

Railway noise is calculated to predict the impact of new or reconstructed railway tracks on nearby residential areas. The results are used to prepare adequate counter- measures, and the calculation results are directly related to the cost of the action plans. The calculated values were used to produce noise maps for each area of inter- est. The Schall 03 2012 is one of the most frequently used methods for the production of noise maps. The latest version was released in 2012 and uses various input para- meters associated with the latest rail vehicles and track systems in Germany. This version has not been sufficiently used in South Korea, and there is a lack of standard guidelines and a precise manual for Korean railway systems. Thus, it is not clear what input parameters will match specific local cases. This study investigates the modeling procedure for Korean railway systems and the differences between calcu- lated railway sound levels and measured values obtained using the Schall 03 2012 model. Depending on the location of sound receivers, the difference between the cal- culated and measured values was within approximately 4 dB for various train types. In the case of high-speed trains, the value was approximately 7 dB. A noise-reducing measure was also modeled. The noise reduction effect of a low-height noise barrier system was predicted and evaluated for operating railway sites within the frame- work of a national research project in Korea. The comparison of calculated and measured values showed differences within 2.5 dB.


2020 ◽  
Vol 46 (3) ◽  
pp. 379-397
Author(s):  
Chunyang Wang

This paper measures the spatial evolution of urban agglomerations to understand be er the impact of high-speed rail (HSR) construction, based on panel data from fi ve major urban agglomerations in China for the period 2004–2015. It is found that there are signi ficant regional diff erences of HSR impacts. The construction of HSR has promoted population and economic diff usion in two advanced urban agglomerations, namely the Yang e River Delta and Pearl River Delta, while promoting population and economic concentration in two relatively less advanced urban agglomerations, e.g. the middle reaches of the Yang e River and Chengdu–Chongqing. In terms of city size, HSR promotes the economic proliferation of large cities and the economic concentration of small and medium-sized cities along its routes. HSR networking has provided a new impetus for restructuring urban spatial systems. Every region should optimize the industrial division with strategic functions of urban agglomeration according to local conditions and accelerate the construction of inter-city intra-regional transport network to maximize the eff ects of high-speed rail across a large regional territory.


Sign in / Sign up

Export Citation Format

Share Document