scholarly journals Synthesis of SDS-Modified Pt/Ti3C2Tx Nanocomposite Catalysts and Electrochemical Performance for Ethanol Oxidation

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3174
Author(s):  
Beibei Yang ◽  
Tian Qin ◽  
Ziping Bao ◽  
Wenqian Lu ◽  
Jiayu Dong ◽  
...  

It is well-known that platinum (Pt) is still the preferred material of anode catalyst in ethanol oxidation, however, the prohibitive high cost and CO poisoning of Pt metal impede the commercialization of fuel cells. Therefore, improving the utilization rate of catalysts and reduce the cost of catalyst become one of the most concerned focus in the construction of fuel cells. In this work, the Pt-based catalysts are synthesized by using different content of sodium dodecyl sulfate (SDS) modified-Ti3C2Tx support, and the dispersion regulation function of SDS modified-Ti3C2Tx supported on Pt nanoparticles is investigated. The structure, composition and morphology of different catalysts are characterized by X-ray diffraction (XRD), X-ray spectroscopy (EDX), transmission electron microscopy (TEM) and high-resolution TEM, respectively. It is found that the Pt nanoparticles in pure Ti3C2Tx surface are serious aggregated and show poor dispersion, whereas the Pt nanoparticles in SDS modified-Ti3C2Tx have a better dispersion. The electrochemical results revealed that SDS modified-Ti3C2Tx supported Pt nanoparticles has higher electrocatalytic activity and stability in both acidic and alkaline ethanol oxidation when the dosage of SDS increases to 100 mg. These findings indicate that the SDS-Ti3C2Tx/Pt catalysts show a promising future of potential applications in fuel cells with modification of Ti3C2Tx support.

Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 10
Author(s):  
Daria V. Mamonova ◽  
Anna A. Vasileva ◽  
Yuri V. Petrov ◽  
Denis V. Danilov ◽  
Ilya E. Kolesnikov ◽  
...  

Surfaces functionalized with metal nanoparticles (NPs) are of great interest due to their wide potential applications in sensing, biomedicine, nanophotonics, etc. However, the precisely controllable decoration with plasmonic nanoparticles requires sophisticated techniques that are often multistep and complex. Here, we present a laser-induced deposition (LID) approach allowing for single-step surface decoration with NPs of controllable composition, morphology, and spatial distribution. The formation of Ag, Pt, and mixed Ag-Pt nanoparticles on a substrate surface was successfully demonstrated as a result of the LID process from commercially available precursors. The deposited nanoparticles were characterized with SEM, TEM, EDX, X-ray diffraction, and UV-VIS absorption spectroscopy, which confirmed the formation of crystalline nanoparticles of Pt (3–5 nm) and Ag (ca. 100 nm) with plasmonic properties. The advantageous features of the LID process allow us to demonstrate the spatially selective deposition of plasmonic NPs in a laser interference pattern, and thereby, the formation of periodic arrays of Ag NPs forming diffraction grating


Nanomaterials ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 519 ◽  
Author(s):  
Kanthasamy Raagulan ◽  
Ramanaskanda Braveenth ◽  
Lee Ro Lee ◽  
Joonsik Lee ◽  
Bo Kim ◽  
...  

MXenes, carbon nanotubes, and nanoparticles are attractive candidates for electromagnetic interference (EMI) shielding. The composites were prepared through a filtration technique and spray coating process. The functionalization of non-woven carbon fabric is an attractive strategy. The prepared composite was characterized using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX), and Raman spectroscopy. The MXene-oxidized carbon nanotube-sodium dodecyl sulfate composite (MXCS) exhibited 50.5 dB (99.999%), and the whole nanoparticle-based composite blocked 99.99% of the electromagnetic radiation. The functionalization increased the shielding by 15.4%. The composite possessed good thermal stability, and the maximum electric conductivity achieved was 12.5 S·cm−1. Thus, the composite shows excellent potential applications towards the areas such as aeronautics, mobile phones, radars, and military.


Author(s):  
Daejong Kim ◽  
Andron Creary

Palm-sized mesoscale microturbomachinery (100∼200W) have broad potential applications in micro power generation areas, such as air/hydrogen management system for low temperature fuel cells, palm-sized micro gas turbines for unmanned air vehicles, robots, very small solid oxide fuel cells, micro power generations for space micro/nano satellites, etc. This paper reports recent progress on design, manufacturing of mesoscale (bearing diameter of 5mm) foil gas bearings applicable to the mesoscale microturbomachinery. With self-generated preload of 0.4N to the bearing, the mesoscale foil gas bearings were predicted to be stable up to the maximum simulated speed of 600,000 rpm. Manufacturing processes involved UV and X-ray lithography, electroplating, and precision forming. Test rigs were designed and constructed for performance tests of the manufactured mesoscale gas bearings.


Catalysts ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 328
Author(s):  
Maria Guascito ◽  
Daniela Chirizzi ◽  
Emanuela Filippo ◽  
Francesco Milano ◽  
Antonio Tepore

In fuel-cell technology development, one of the most important objectives is to minimize the amount of Pt, the most employed material as an oxygen reduction and methanol oxidation electro-catalyst. In this paper, we report the synthesis and characterization of Te nanotubes (TeNTs) decorated with Pt nanoparticles, readily prepared from stirred aqueous solutions of PtCl2 containing a suspension of TeNTs, and ethanol acting as a reducing agent, avoiding the use of any hydrophobic surfactants such as capping stabilizing substance. The obtained TeNTs decorated with Pt nanoparticles (TeNTs/PtNPs) have been fully characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area diffraction patterns (SAD), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV). We demonstrated that the new material can be successfully employed in fuel cells, either as an anodic (for methanol oxidation reaction) or a cathodic (for oxygen reduction reaction) electrode, with high efficiency in terms of related mass activities and on-set improvement. Remarkably, the cell operates in aqueous electrolyte buffered at pH 7.0, thus, avoiding acidic or alkaline conditions that might lead to, for example, Pt dissolution (at low pH), and paving the way for the development of biocompatible devices and on-chip fuel cells.


2021 ◽  
Author(s):  
Qinglan Fu ◽  
Mengyu Gan ◽  
Li Ma ◽  
Shuang Wei ◽  
Taichun Wu ◽  
...  

To meet the requirement for the potential applications of the fuel cells, it is of vital importance to search for advanced electrocatalysts toward methanol oxidation reaction (MOR) that have both...


2009 ◽  
Vol 24 (8) ◽  
pp. 2520-2527 ◽  
Author(s):  
Yonghao Lu ◽  
Junping Wang ◽  
Yaogen Shen ◽  
Dongbai Sun

A series of Ti-B-C-N thin films were deposited on Si (100) at 500 °C by incorporation of different amounts of N into Ti-B-C using reactive unbalanced dc magnetron sputtering in an Ar-N2 gas mixture. The effect of N content on phase configuration, nanostructure evolution, and mechanical behaviors was studied by x-ray diffraction, x-ray photoelectron spectroscopy, Raman spectroscopy, high-resolution transmission electron microscopy, and microindentation. It was found that the pure Ti-B-C was two-phased quasi-amorphous thin films comprising TiCx and TiB2. Incorporation of a small amount of N not only dissolved into TiCx but also promoted growth of TiCx nano-grains. As a result, nanocomposite thin films of nanocrystalline (nc-) TiCx(Ny) (x + y < 1) embedded into amorphous (a-) TiB2 were observed until nitrogen fully filled all carbon vacancy lattice (at that time x + y = 1). Additional increase of N content promoted formation of a-BN at the cost of TiB2, which produced nanocomposite thin films of nc-Ti(Cx,N1-x) embedded into a-(TiB2, BN). Formation of BN also decreased nanocrystalline size. Both microhardness and elastic modulus values were increased with an increase of N content and got their maximums at nanocomposite thin films consisting of nc-Ti(Cx,N1-x) and a-TiB2. Both values were decreased after formation of BN. Residual compressive stress value was successively decreased with an increase of N content. Enhancement of hardness was attributed to formation of nanocomposite structure and solid solution hardening.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1512
Author(s):  
Yuhan Liu ◽  
Meiling Zhang ◽  
Jinjun Cheng ◽  
Yue Zhang ◽  
Hui Kong ◽  
...  

Glycyrrhizae Radix et Rhizoma (GRR) is one of the commonly used traditional Chinese medicines in clinical practice, which has been applied to treat digestive system diseases for hundreds of years. GRR is preferred for anti-gastric ulcer, however, the main active compounds are still unknown. In this study, GRR was used as precursor to synthesize carbon dots (CDs) by a environment-friendly one-step pyrolysis process. GRR-CDs were characterized by using transmission electron microscopy, high-resolution TEM, fourier transform infrared, ultraviolet-visible and fluorescence spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and high-performance liquid chromatography. In addition, cellular toxicity of GRR-CDs was studied by using CCK-8 in RAW264.7 cells, and the anti-gastric ulcer activity was evaluated and confirmed using mice model of acute alcoholic gastric ulcer. The experiment confirmed that GRR-CDs were the spherical structure with a large number of active groups on the surface and their particle size ranged from 2 to 10 nm. GRR-CDs had no toxicity to RAW264.7 cells at concentration of 19.5 to 5000 μg/mL and could reduce the oxidative damage of gastric mucosa and tissues caused by alcohol, as demonstrated by restoring expression of malondialdehyde, superoxide dismutase and nitric oxide in serum and tissue of mice. The results indicated the explicit anti-ulcer activity of GRR-CDs, which provided a new insights for the research on effective material basis of GRR.


2021 ◽  
Vol 5 (3) ◽  
pp. 37
Author(s):  
Hernán Martinelli ◽  
Claudia Domínguez ◽  
Marcos Fernández Leyes ◽  
Sergio Moya ◽  
Hernán Ritacco

In the search for responsive complexes with potential applications in the formulation of smart dispersed systems such as foams, we hypothesized that a pH-responsive system could be formulated with polyacrylic acid (PAA) mixed with a cationic surfactant, Gemini 12-2-12 (G12). We studied PAA-G12 complexes at liquid–air interfaces by equilibrium and dynamic surface tension, surface rheology, and X-ray reflectometry (XRR). We found that complexes adsorb at the interfaces synergistically, lowering the equilibrium surface tension at surfactant concentrations well below the critical micelle concentration (cmc) of the surfactant. We studied the stability of foams formulated with the complexes as a function of pH. The foams respond reversibly to pH changes: at pH 3.5, they are very stable; at pH > 6, the complexes do not form foams at all. The data presented here demonstrate that foam formation and its pH responsiveness are due to interfacial dynamics.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Umar Shah ◽  
Deepak Dwivedi ◽  
Mark Hackett ◽  
Hani Al-Salami ◽  
Ranjeet P. Utikar ◽  
...  

AbstractKafirin, the hydrophobic prolamin storage protein in sorghum grain is enriched when the grain is used for bioethanol production to give dried distillers grain with solubles (DGGS) as a by-product. There is great interest in DDGS kafirin as a new source for biomaterials. There is however a lack of fundamental understanding of how the physicochemical properties of DDGS kafirin having been exposed to the high temperature conditions during ethanol production, compare to kafirin made directly from the grain. An understanding of these properties is required to catalyse the utilisation of DDGS kafirin for biomaterial applications. The aim of this study was to extract kafirin directly from sorghum grain and from DDGS derived from the same grain and, then perform a comparative investigation of the physicochemical properties of these kafirins in terms of: polypeptide profile by sodium-dodecyl sulphate polyacrylamide gel electrophoresis; secondary structure by Fourier transform infra-red spectroscopy and x-ray diffraction, self-assembly behaviour by small-angle x-ray scattering, surface morphology by scanning electron microscopy and surface chemical properties by energy dispersive x-ray spectroscopy. DDGS kafirin was found to have very similar polypeptide profile as grain kafirin but contained altered secondary structure with increased levels of β-sheets. The structure morphology showed surface fractals and surface elemental composition suggesting enhanced reactivity with possibility to endow interfacial wettability. These properties of DDGS kafirin may provide it with unique functionality and thus open up opportunities for it to be used as a novel food grade biomaterial.


Sign in / Sign up

Export Citation Format

Share Document