scholarly journals The Influence of Nanoparticles on Fire Retardancy of Pedunculate Oak Wood

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3405
Author(s):  
Danica Kačíková ◽  
Ivan Kubovský ◽  
Adriana Eštoková ◽  
František Kačík ◽  
Elena Kmeťová ◽  
...  

Traditional flame retardants often contain halogens and produce toxic gases when burned. Hence, in this study, low-cost, environmentally friendly compounds that act as fire retardants are investigated. These materials often contain nanoparticles, from which TiO2 and SiO2 are the most promising. In this work, pedunculate oak wood specimens were modified with sodium silicate (Na2SiO3, i.e., water glass) and TiO2, SiO2, and ZnO nanoparticles using the vacuum-pressure technique. Changes in the samples and fire characteristics of modified wood were studied via thermal analysis (TA), infrared spectroscopy (FTIR), and scanning electron microscopy, coupled with energy-dispersive X-ray spectroscopy (SEM-EDX). The results of TA showed the most significant wood decomposition at a temperature of 350 °C, with a non-significant influence of the nanoparticles. A dominant effect of sodium silicate was observed in the main weight-loss step, resulting in a drop in decomposition temperature within the temperature range of 36–44 °C. More intensive decomposition of wood treated with water glass and nanoparticles led to a faster release of non-combustible gases, which slowed down the combustion process. The results demonstrated that wood modifications using sodium silicate and nanoparticle systems have potentially enhanced flame retardant properties.

Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 540
Author(s):  
Yukyung Kim ◽  
Sanghyuck Lee ◽  
Hyeonseok Yoon

Currently, polymers are competing with metals and ceramics to realize various material characteristics, including mechanical and electrical properties. However, most polymers consist of organic matter, making them vulnerable to flames and high-temperature conditions. In addition, the combustion of polymers consisting of different types of organic matter results in various gaseous hazards. Therefore, to minimize the fire damage, there has been a significant demand for developing polymers that are fire resistant or flame retardant. From this viewpoint, it is crucial to design and synthesize thermally stable polymers that are less likely to decompose into combustible gaseous species under high-temperature conditions. Flame retardants can also be introduced to further reinforce the fire performance of polymers. In this review, the combustion process of organic matter, types of flame retardants, and common flammability testing methods are reviewed. Furthermore, the latest research trends in the use of versatile nanofillers to enhance the fire performance of polymeric materials are discussed with an emphasis on their underlying action, advantages, and disadvantages.


2021 ◽  
Vol 10 (1) ◽  
pp. 268-283
Author(s):  
Yunlong Zhao ◽  
Yajie Zheng ◽  
Hanbing He ◽  
Zhaoming Sun ◽  
An Li

Abstract Bauxite reaction residue (BRR) produced from the poly-aluminum chloride (PAC) coagulant industry is a solid acidic waste that is harmful to environment. A low temperature synthesis route to convert the waste into water glass was reported. Silica dissolution process was systematically studied, including the thermodynamic analysis and the influence of calcium and aluminum on the leaching of amorphous silica. Simulation studies have shown that calcium and aluminum combine with silicon to form hydrated calcium silicate, silica–alumina gel, and zeolite, respectively, thereby hindering the leaching of silica. Maximizing the removal of calcium, aluminum, and chlorine can effectively improve the leaching of silicon in the subsequent process, and corresponding element removal rates are 42.81%, 44.15%, and 96.94%, respectively. The removed material is not randomly discarded and is reused to prepare PAC. The silica extraction rate reached 81.45% under optimal conditions (NaOH; 3 mol L−1, L S−1; 5/1, 75°C, 2 h), and sodium silicate modulus (nSiO2:nNa2O) is 1.11. The results indicated that a large amount of silica was existed in amorphous form. Precipitated silica was obtained by acidifying sodium silicate solution at optimal pH 7.0. Moreover, sodium silicate (1.11) further synthesizes sodium silicate (modulus 3.27) by adding precipitated silica at 75°C.


2014 ◽  
Vol 699 ◽  
pp. 648-653 ◽  
Author(s):  
Bahaaddein K.M. Mahgoub ◽  
Suhaimi Hassan ◽  
Shaharin Anwar Sulaiman

In this review, a series of research papers on the effects of hydrogen and carbon monoxide content in syngas composition on the performance and exhaust emission of compression ignition diesel engines, were compiled. Generally, the use of syngas in compression ignition (CI) diesel engine leads to reduce power output due to lower heating value when compared to pure liquid diesel mode. Therefore, variation in syngas composition, especially hydrogen and carbon monoxide (Combustible gases), is suggested to know the appropriate syngas composition. Furthermore, the simulated model of syngas will help to further explore the detailed effects of engine parameters on the combustion process including the ignition delay, combustion duration, heat release rate and combustion phasing. This will also contribute towards the efforts of improvement in performance and reduction in pollutants’ emissions from CI diesel engines running on syngas at dual fuel mode. Generally, the database of syngas composition is not fully developed and there is still room to find the optimum H2 and CO ratio for performance, emission and diesel displacement of CI diesel engines.


2011 ◽  
Vol 236-238 ◽  
pp. 1152-1155
Author(s):  
Lei Gao ◽  
Bo Wen Cheng ◽  
Jun Song ◽  
Zeng Geng Guo ◽  
Fei Lu ◽  
...  

This paper has studied the structure and flame-retardant properties of flame-retardant cellulose fiber with DDPSN as flame retardant. The flame retardants was uniformly dispersed in the cellulose /[Amim]Cl Solution to obtain the good spinnable dope, then the dope was wet-spun. Effects of the flame-retardant contention the fiber structure and properties were investigated. The surface of the flame-retardant cellulose fiber was observed using field emission scanning electron microscope (FESEM). Besides, through the Simultaneous thermal analysis, it has been shown that, with the increase of fame retardant, the degree of fame resistance was obviously improved. The flame retardant acted greatly in condensed phase during the fiber degradation and remained mainly in residues after degradation, the experiments show that the flame-retardant properties of flame-retardant cellulose fiber with 20wt% DDPSN was obvious.


1983 ◽  
Vol 1 (2) ◽  
pp. 145-154 ◽  
Author(s):  
John V. Beninate ◽  
Brenda J. Trask ◽  
Timothy A. Calamari ◽  
George L. Drake

Durable phosphorus-based flame retardants were applied to twill fabrics con taining cotton and wool to study the effect of wool on the flame retardancy and physical properties of the blend fabrics. The presence of wool in untreated blend fabrics caused burning rates to decrease and oxygen index values to increase as wool content increased in the blends. These effects were also observed in cotton/ wool blends treated with low levels of the Thps-urea-TMM flame retardant, but were less pronounced in fabrics treated at high levels. Thermogravimetric analyses were conducted to study the thermal degradation of the treated and untreated fabrics. The presence of wool in treated blend fabrics did not sig nificantly change strength retention, area shrinkage and wrinkle recovery values in comparison to similarly treated 100% cotton fabrics.


2021 ◽  
Vol 2021 ◽  
pp. 86-93
Author(s):  
Anatolii Mudrychenko ◽  
◽  
Andrii Hrinchuk ◽  
Ivan Balashov ◽  
Sergey Illyasch ◽  
...  

Introduction. Growing volumes of road construction increase the need to expand and rationally use of raw materials. The need for stone materials can be solved through the wide spread using of local materials, recycled products of industry in the pavement base courses and decreasing the use of natural construction materials by replacing them with alternatives, including soils, slag materials that are metallurgical industry wastes. Experience of ferrous metallurgy slag usage has been accumulated in the road industry of Ukraine. Their usage makes it possible to extend the construction season, increases the strength and reliability of road structures due to their physical and mechanical properties, significantly reduces the road pavement energy consumption, simplifying the technology of works and the estimated cost of road construction. It was determined that the layers of pavement made from blast furnace slag have a high bearing capacity. Slag structures in 5–10 years of hardening are not inferior to, and in 10–20 years surpass cement structures on durability and deformation resistance. However, there is an urgent need to provide strength and open road traffic on the already built road section in a shortest possible term, so there is a need to accelerate the activation of the slow-setting binder. Therefore water glass (water solution of sodium silicate) is used.Purpose. The purpose of the work is to study the feasibility of using the soils and recycled industry products treated with water glass in the road pavement base courses.Materials and methods. Experimental tests of soils and blast furnace slags treated with water glass with different content of water solution of sodium silicate were performed.Results. The feasibility of using the asphalt concrete mixtures on the basis of soils and recycled products of industry treated with water glass in the pavement base courses is determined. Recommendations regarding technological parameters of preparation, transportation, laying and compaction of such mixes are given.Conclusions. Performed studies have shown that the physical and mechanical parameters of soils and blast furnace slags treated with water glass meet the requirements of current regulations of Ukraine. The advantages of use are noted, namely: the possibility of replacement of traditional stone materials by the local materials and recycled products of industry, reducing the transport component in the cost of construction. The obtained results indicate the feasibility of using the soils and recycled products of industry treated with water glass in the road construction.Keywords: soils, recycled products of industry, graded blast furnace slag, water solution of sodium silicate, water glass


2014 ◽  
Vol 1006-1007 ◽  
pp. 181-184
Author(s):  
Zhu Sen Yang ◽  
Xing Hua Liu ◽  
Shu Chen

The combustion process of municipal solid waste (MSW) in a operating 750t/d grate furnace in Guangzhou was researched by means of numerical simulation. The influence of MSW moisture content on burning effect was discussed. The results show that: with the moisture content dropped from 50% to 30%, the heat value could be evaluated from 13.72% to 54.91% and the average temperature in the furnace could be promoted 90-248°C. However, the combustible gases and particle in the flue gas of outlet would take up a high proportion since lacking of oxygen would lead to an incomplete combustion. The excess air coefficient should be increased to 2.043~2.593 in order to ensure the flue gas residence time more than 2s and temperature in the furnace higher to 800°C.


2017 ◽  
Vol 168 (1) ◽  
pp. 27-31
Author(s):  
Wojciech CIEŚLIK ◽  
Ireneusz PIELECHA

In this work non-combustible gases impact on combustion processes studies is performed. Research was performed in a optically accessible rapid compression machine (RCM) under spark ignition engine conditions. The distribution of the swirl charge in the relation to adopted for analysis sequence of gas delivery to the chamber was varied with regard to the main injection. Authors investigate the influence of these sequence on the combustion and the ignition delay of the main injection and the overall combustion characteristics. The aim of this work is the experimental recognition of possibilities of creating combustible mixtures of light hydrocarbon fuels surrounded by non-combustible gases affecting the function of the inhibitor. Specifying the ability of preparation and combustion of mixtures in such systems enables the scientific analysis of adiabatization of the combustion process of fuel-air mixtures in the operating chambers. Theoretical analysis of the issues indicates possibility of obtaining such a stratification of the charge, that the inactive exhaust gases creating the outer ring surround the combustible mixture inside in such a way as to reduce the amount of heat exchanged between the working medium and the walls of the cylinder.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Walid Edris ◽  
Faris Matalkah ◽  
Bara’ah Rbabah ◽  
Ahmad Abu Sbaih ◽  
Reham Hailat

Abstract This research aims to produce a Compressed Earth Block (CEB) product using locally available soil collected from northern Jordan. The CEB mixture was further stabilized using Portland cement, lime, and sodium silicate. The research significance is based upon the urgent need of most developing countries (e.g. Jordan, Egypt…etc) to build more durable and low-cost houses by using locally available materials. As a result, CEB was identified as a cheap and environmentally friendly construction material. CEB specimens were thoroughly characterized by studying the mechanical properties and durability characteristics. Blocks of 30 x 15 x 8 cm with two holes of 7.5 cm in diameter have a potential for higher enduring, higher compressive strength, better thermal insulation, and lower production cost. Blocks were manufactured with an addition of 8 % for either Portland cement or lime, as well as 2 % of sodium silicate to the soil. The results showed that the addition of 8 % of cement to the CEB achieves satisfactory results in both mechanical and durability properties. Also, the addition of sodium silicate was found to enhance the early-age compressive strength however it affected negatively the durable properties of blocks by increasing the erosion rate and deterioration when exposed to water.


Sign in / Sign up

Export Citation Format

Share Document