scholarly journals Investigation on the Selenization Treatment of Kesterite Cu2Mg0.2Zn0.8Sn(S,Se)4 Films for Solar Cell

Nanomaterials ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 946 ◽  
Author(s):  
Dongyue Jiang ◽  
Yu Zhang ◽  
Yingrui Sui ◽  
Wenjie He ◽  
Zhanwu Wang ◽  
...  

High-selenium Cu2Mg0.2Zn0.8Sn(S,Se)4 (CMZTSSe) films were prepared on a soda lime glass substrate using the sol–gel spin coating method, followed by selenization treatment. In this work, we investigated the effects of selenization temperature and selenization time on the crystal quality, and electrical and optical properties of CMZTSSe films. The study on the micro-structure by XRD, Raman, X-ray photoelectron spectroscopy (XPS), and energy-dispersive X-ray spectroscopy (EDS) analysis showed that all CMZTSSe samples had kesterite crystalline structure. In addition, the crystalline quality of CMZTSSe is improved and larger Se takes the site of S in CMZTSSe with the increase of selenization temperature and selenization time. When increasing the selenization temperature from 500 to 530 °C and increasing the annealing time from 10 to 15 min, the morphological studies showed that the microstructures of the films were dense and void-free. When further increasing the temperature and time, the crystalline quality of the films began to deteriorate. In addition, the bandgaps of CMZTSSe are tuned from 1.06 to 0.93 eV through adjusting the selenization conditions. When CMZTSSe samples are annealed at 530 °C for 15 min under Se atmosphere, the crystal quality and optical–electrical characteristics of CMZTSSe will be optimal, and the grain size and carrier concentration reach maximums of 1.5–2.5 μm and 6.47 × 1018 cm−3.

2018 ◽  
Vol 96 (7) ◽  
pp. 804-809 ◽  
Author(s):  
Harun Güney ◽  
Demet İskenderoğlu

The undoped and 1%, 2%, and 3% Cd-doped MgO nanostructures were grown by SILAR method on the soda lime glass substrate. X-ray diffractometer (XRD), ultraviolet–visible spectrometer, scanning electron microscope, photoluminescence (PL), and X-ray photoelectron spectroscopy measurements were taken to investigate Cd doping effects on the structural, optical, and morphological properties of MgO nanostructures. XRD measurements show that the samples have cubic structure and planes of (200), (220) of MgO and (111), (200), and (220) of CdO. It was observed that band gaps increase with rising Cd doping rate in MgO thin film. The surface morphology of samples demonstrates that MgO nanostructures have been affected by the Cd doping. PL measurements show that undoped and Cd-doped MgO thin films can radiate in the visible emission region.


Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 129
Author(s):  
Yang Yue ◽  
Maosong Sun ◽  
Jie Chen ◽  
Xuejun Yan ◽  
Zhuokun He ◽  
...  

High-quality AlN film is a key factor affecting the performance of deep-ultraviolet optoelectronic devices. In this work, high-temperature annealing technology in a nitrogen atmosphere was used to improve the quality of AlN films with different polarities grown by magnetron sputtering. After annealing at 1400–1650 °C, the crystal quality of the AlN films was improved. However, there was a gap between the quality of non-polar and polar films. In addition, compared with the semi-polar film, the quality of the non-polar film was more easily improved by annealing. The anisotropy of both the semi-polar and non-polar films decreased with increasing annealing temperature. The results of Raman spectroscopy, scanning electron microscopy and X-ray photoelectron spectroscopy revealed that the annihilation of impurities and grain boundaries during the annealing process were responsible for the improvement of crystal quality and the differences between the films with different polarities.


2003 ◽  
Vol 782 ◽  
Author(s):  
Luisa F. Cueto ◽  
Enrique Sánchez ◽  
Leticia M. Torres-Martínez ◽  
Gustavo A. Hirata

ABSTRACTSol-Gel, dip-coated titaniumIV and zirconiumIV dioxide monolayered films were deposited on soda-lime glass using titanium and zirconium acetylacetonates as precursors, respectively, and their structural and morphological characterization carried out. The films were heat-treated at different temperatures, 25°C, 150°C, 300°C, and 500°C and, according to Low-angle X-Ray Diffraction analyses (XRD), it was found that TiO2 (anatase) and tetragonal zirconia were present on the substrate, when heated at 500°C. Yoshida and Yajima's method, based on optical information given by the films transmittance UV-Vis spectra, was used to estimate film thickness, refractive index, and, using the Lorentz-Lorentz relationship, their volume fraction. Film thinning and phase formation with increasing temperature was observed, and both titania and zirconia films showed similar behavior during firing. Smooth films with a roughness value of around 2 nm are obtained for the two cases as indicated by Atomic Force Microscopy (AFM) of the surface. Also, formation temperature at around 500°C resulted in the optimum condition to obtain clean stoichiometric TiO2 and ZrO2 thin films on glass substrates as confirmed by X-Ray Photoelectron Spectroscopy (XPS) measurements.


2017 ◽  
Vol 68 (7) ◽  
pp. 31-36 ◽  
Author(s):  
Asma Sedik ◽  
Ana M. Ferraria ◽  
Ana P. Carapeto ◽  
Bouzid Bellal ◽  
Mohamed Trari ◽  
...  

AbstractTiO2has an easily tunable bandgap and a great absorption dye ability being widely used in many fields and in a number of fascinating applications. In this study, a wet chemical route, particularly a sol gel method using spin-coating is adopted to deposit TiO2thin films onto soda lime glass and silicon substrates. TiO2films were prepared by using an alcoholic solution of analytical reagent grade TiCl4as titanium precursor at various experimental conditions. The accent was put on the conditions of preparation (spin time, spin speed, precursor concentration, number of coating layersetc), doping and on the post-deposit treatment namely the drying and the crystallization. The results showed a strong dependence on the drying temperature and on the temperature and duration of the crystallization. We found that the solution preparation and its color are important for getting a reproducible final product. The Raman spectra recorded at room temperature, showed the characteristic peaks of anatase which appear at 143 and around 396 cm−1. These peaks confirm the presence of TiO2.The X-ray diffraction (XRD) was used to identify the crystalline characteristic of TiO2while the chemical states and relative amounts of the main elements existing in the samples were investigated by X-ray Photoelectron Spectroscopy (XPS). The morphology of the samples was visualized by AFM. We show by this work the feasibility to obtain different nanostructured TiO2by changing the concentration of the solution. Photocatalytic activity of TiO2films was evaluated. Rhodamine B is a recalcitrant dye and TiO2was successfully tested for its oxidation. An abatement of 60% was obtained under sunlight for an initial concentration of 10 mg/l.


2019 ◽  
Vol 14 (11) ◽  
pp. 1503-1511 ◽  
Author(s):  
Hafiz Muhammad Salman Ajmal ◽  
Waqar Khan ◽  
Fasihullah Khan ◽  
Noor-ul Huda ◽  
Sam-Dong Kim

In this study, we observe the effect of Cu doping on the ZnO nanorod (NR) structure grown on a polyethylene terephthalate flexible substrates by hydrothermal growth of sol–gel method proceeded at 150 °C. Copper (II) nitrate trihydrate (Cu-nitrate) and copper (II) acetate monohydrate (Cu-acetate) are employed as precursors for Cu dopants in aqueous growth solution to examine the evolutionary change of the growth morphology, optical characteristics, and chemical composition of as-grown ZnO NRs. A significant influence of dopant molarity on the morphology of wurtzite ZnO nanocrystals is observed by field-emission scanning electron microscopy. X-ray diffraction analysis also reveals more enhanced crystalline quality from Cu-doped NR crystals prepared by Cu-acetates than that grown with Cu-nitrate precursor. Near band-edge emission of 2 mM Cu-acetate doped NRs is greatly enhanced by 2.5 times compared to those grown with Cu-nitrate precursors. A great reduction in visible emissions is also realized, and this phenomenon is associated with overall improvement in NR crystalline quality by suppressing the oxygenated carbon groups or hydroxyl introduced by the aqueous solution-based growth. X-ray photoelectron spectroscopy also shows that a very high O/Zn atomic ratio of 0.73 can be achieved in the case of NR crystals prepared by 2 mM Cu-acetate. Cu doped ZnO nanostructures of improved optical and structural properties achieved in this study can be utilized in the wide emerging field of flexible device applications such as laser diodes, light-emitting diodes, piezoelectric transducers and generators, gas sensors, and ultraviolet detectors.


Separations ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 25
Author(s):  
Chukwuka Bethel Anucha ◽  
Ilknur Altin ◽  
Emin Bacaksız ◽  
Tayfur Kucukomeroglu ◽  
Masho Hilawie Belay ◽  
...  

Abatement of contaminants of emerging concerns (CECs) in water sources has been widely studied employing TiO2 based heterogeneous photocatalysis. However, low quantum energy yield among other limitations of titania has led to its modification with other semiconductor materials for improved photocatalytic activity. In this work, a 0.05 wt.% CuWO4 over TiO2 was prepared as a powder composite. Each component part synthesized via the sol-gel method for TiO2, and CuWO4 by co-precipitation assisted hydrothermal method from precursor salts, underwent gentle mechanical agitation. Homogenization of the nanopowder precursors was performed by zirconia ball milling for 2 h. The final material was obtained after annealing at 500 °C for 3.5 h. Structural and morphological characterization of the synthesized material has been achieved employing X-ray diffraction (XRD), Fourier transform infra-red (FTIR) spectroscopy, Brunauer–Emmett–Teller (BET) N2 adsorption–desorption analysis, Scanning electron microscopy-coupled Energy dispersive X-ray spectroscopy (SEM-EDS), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and UV-Vis diffuse reflectance spectroscopy (UV-vis DRS) for optical characterization. The 0.05 wt.% CuWO4-TiO2 catalyst was investigated for its photocatalytic activity over carbamazepine (CBZ), achieving a degradation of almost 100% after 2 h irradiation. A comparison with pure TiO2 prepared under those same conditions was made. The effect of pH, chemical scavengers, H2O2 as well as contaminant ion effects (anions, cations), and humic acid (HA) was investigated, and their related influences on the photocatalyst efficiency towards CBZ degradation highlighted accordingly.


2021 ◽  
Vol 3 (7) ◽  
Author(s):  
Alexandre Pancotti ◽  
Dener Pereira Santos ◽  
Dielly Oliveira Morais ◽  
Mauro Vinícius de Barros Souza ◽  
Débora R. Lima ◽  
...  

AbstractIn this study, we report the synthesis and characterization of NiFe2O4 and CoFe2O4 nanoparticles (NPs) which are widely used in the biomedical area. There is still limited knowledge how the properties of these materials are influenced by different chemical routes. In this work, we investigated the effect of heat treatment over cytotoxicity of cobalt and niquel ferrites NPs synthesized by sol-gel method. Then the samples were studied using transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM), Fourier Transform Infrared Spectroscopy Analysis (FTIR), and X-ray fluorescence (XRF). The average crystallite sizes of the particles were found to be in the range of 20–35 nm. The hemocompatibility (erythrocytes and leukocytes) was checked. Cytotoxicity results were similar to those of the control test sample, therefore suggesting hemocompatibility of the tested materials.


Cerâmica ◽  
2019 ◽  
Vol 65 (374) ◽  
pp. 274-281 ◽  
Author(s):  
S. S. Satpute ◽  
S. R. Wadgane ◽  
S. R. Kadam ◽  
D. R. Mane ◽  
R. H. Kadam

Abstract Y3+ substituted strontium hexaferrites having chemical composition SrYxFe12-xO19 (x= 0.0, 0.5, 1.0, 1.5) were successfully synthesized by sol-gel auto-combustion method. The structural and morphological studies of prepared samples were investigated by using X-ray diffraction technique, energy dispersive X-ray spectroscopy, field emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy. The X-ray diffraction pattern confirmed the single-phase hexagonal structure of yttrium substituted strontium ferrite and the lattice parameters a and c increased with the substitution of Y3+ ions. The crystallite size also varied with x content from 60 to 80 nm. The morphology was studied by FE-SEM, and the grain size of nanoparticles ranged from 44 to 130 nm. The magnetic properties were investigated by using vibrating sample magnetometer. The value of saturation magnetization decreased from 49.60 to 35.40 emu/g. The dielectric constant decreased non-linearly whereas the electrical dc resistivity increased with the yttrium concentration in strontium hexaferrite.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3583
Author(s):  
Junying Yang ◽  
Minye Huang ◽  
Shengsen Wang ◽  
Xiaoyun Mao ◽  
Yueming Hu ◽  
...  

In this study, a magnetic copper ferrite/montmorillonite-k10 nanocomposite (CuFe2O4/MMT-k10) was successfully fabricated by a simple sol-gel combustion method and was characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), the Brunner–Emmett–Teller (BET) method, vibrating sample magnetometer (VSM), and X-ray photoelectron spectroscopy (XPS). For levofloxacin (LVF) degradation, CuFe2O4/MMT-k10 was utilized to activate persulfate (PS). Due to the relative high adsorption capacity of CuFe2O4/MMT-k10, the adsorption feature was considered an enhancement of LVF degradation. In addition, the response surface methodology (RSM) model was established with the parameters of pH, temperature, PS dosage, and CuFe2O4/MMT-k10 dosage as the independent variables to obtain the optimal response for LVF degradation. In cycle experiments, we identified the good stability and reusability of CuFe2O4/MMT-k10. We proposed a potential mechanism of CuFe2O4/MMT-k10 activating PS through free radical quenching tests and XPS analysis. These results reveal that CuFe2O4/MMT-k10 nanocomposite could activate the persulfate, which is an efficient technique for LVF degradation in water.


Sign in / Sign up

Export Citation Format

Share Document