scholarly journals Synthesis of NdAlO3 Nanoparticles and Evaluation of the Catalytic Capacity for Biodiesel Synthesis

Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1545 ◽  
Author(s):  
Dionicio-Navarrete ◽  
Arrieta-Gonzalez ◽  
Quinto-Hernandez ◽  
Casales-Diaz ◽  
Zuñiga-Diaz ◽  
...  

Biodiesel synthesis was carried out via heterogeneous catalysis of canola oil with nanoparticles of a mixed oxide based on rare earths. The catalyst synthesis (NdAlO3) was carried out based on the method proposed by Pechini for the synthesis of nanoparticles. Thermogravimetric analysis-differential thermal analysis (TGA-DTA) analysis was performed on the nanoparticle precursor gel in order to establish the optimum conditions for its calcination, with these being of 800 °C over 24 h. A pure NdAlO3 compound with an approximate size of 100 nm was obtained. The products of the transesterification reaction were analyzed using gas chromatography, FTIR, and NMR. The optimum reaction conditions were determined, namely, the temperature effect, reaction time, methanol:oil mass ratio, and recyclability of the catalyst. These studies showed the following optimal conditions: 200 °C, 5 h, methanol:oil mass ratio of 6:1, and a constant decrease in the catalytic activity of the catalyst was observed for up to six reuses, which later remained constant at around a 50% conversion rate. The maximum biodiesel yield obtained with the optimum conditions was around 75%. Analysis of the reaction products showed that the residual oil showed a chemical composition different from that of the source oil, and that both the biodiesel and glycerol obtained were of high purity.

2015 ◽  
Vol 21 (1-1) ◽  
pp. 113-121 ◽  
Author(s):  
Laishun Shi ◽  
Meijie Sun ◽  
Na Li ◽  
Bochen Zhang

A novel betaine type asphalt emulsifier 3-(N,N,N-dimethyl acetoxy ammonium chloride)-2-hydroxypropyl laurate was synthesized after three steps by the reaction of lauric acid, epichlorohydrin, dimethylamine and sodium chloroacetate. The optimum reaction conditions were obtained for the synthesis of the first step of 3-chloro-2-hydroxypropyl laurate. The esterification yield reaches 97.1% at the optimum conditions of reaction temperature 80?C, reaction time 6 h, feedstock mole ratio of epichlorohydrin to lauric acid 1.5, mass ratio of catalyst to lauric acid 2%. The chemical structure of the product was characterized by FTIR and 1H NMR. The first synthesis step of 3-chloro-2-hydroxypropyl laurate was monitored by online FTIR technique. The by-product was detected by the online FTIR analysis. Based upon the experimental data, a plausible reaction mechanism was proposed for the reaction. The CMC of the objective product has a lower value of 7.4?10-4 mol/L. The surface tension at CMC is 30.85 mN/m. The emulsifier is a rapid-set asphalt emulsifier.


2017 ◽  
Vol 35 (7-8) ◽  
pp. 612-622 ◽  
Author(s):  
Olha Korkuna ◽  
Tetyana Zhak ◽  
Maria Smolinska

The new spectrophotometric methods of fluoroquinolones: enrofloxacin, norfloxacin, and ofloxacin determination with the methyl red are based on ion-pair complex formation between fluoroquinolones and methyl red in acidic medium at pH 3–4 and subsequent three times extraction of the reaction products by chloroform. The obtained orange extract has an absorbance maximum at λmax = 492 nm. Optimum conditions for the formation as well as for the extraction of ion-pair complexes between fluoroquinolones and methyl red at the presence of acetate buffer and potassium chloride solutions have been established: C (CH3COONa) = 0.85 M, C (KCl) = 2 M, pH = 3.8. Effective molar absorbtivity of ion-pair complexes chloroform extracts is ɛ492∼3·103 l mol−1 cm−1. New extraction-spectrophotometric methods for fluoroquinolone determination with methyl red were developed on the basis of the optimum reaction conditions. Concentration range for the system fluoroquinolone – methyl red is (2.5–25)·10−6 M; limit of detection for enrofloxacin is Cmin = 2.48·10−6 M, for norfloxacin – Cmin = 3.07·10−6 M, for ofloxacin – Cmin = 3.17·10−6 M.


2013 ◽  
Vol 634-638 ◽  
pp. 1968-1976 ◽  
Author(s):  
Shi Han Shen ◽  
Yu Yu Zhang ◽  
Tian Bin Li ◽  
Qing Le Zeng

In this paper, a novel superabsorbent composite material based on acrylic acid (AA), acrylic amide (AM) and inorganic kaolin was synthesized via solution polymerization in aqueous medium with N,N’-methylene bisacrylamide (MBA) as crosslinker and potassium persulfate (KPS) as initiator. The effects of water absorbency of the composite variables, such as neutralization, kaolin concentration and MBA concentration, on the water absorbency were systematically optimized. Evidence of compositing was obtained by a comparison of the Fourier transform infrared spectra of the initial reactants with that of the superabsorbent composites, and its complex structure was confirmed with scanning electron microscope. The water absorbing mechanism was also discussed. The results indicated that the superabsorbent composite material was successfully synthesized and the optimum reaction conditions were as follows: the neutralization degree was 80%, the dosage of kaolin, crosslinker and initiator were 4%, 0.11%, and 0.9% respectively and the mass ratio of AA and AM was 3∶2. The optimum absorbency of the superabsorbent composite material in distilled water could reach 815.6g/g.


2013 ◽  
Vol 746 ◽  
pp. 49-52 ◽  
Author(s):  
Peng Quan Yao ◽  
Lin Hua Zhu ◽  
Jin Yang ◽  
Tian Si

In this work, the liquid phase catalytic isomerization of α-pinene over alumina-pillared montmorillonitewas investigated, and the influence of reaction temperature, reaction time and amount of the catalyston the conversion of α-pinenewere discussed systematically, and the optimum reaction conditions forisomerization of α-pineneover alumina-pillared montmorillonitewere obtained. The basal spacing of thealumina-pillared montmorillonite was characterized by X-ray diffraction, and the liquid reactant was separated and identified by gas chromatography. The result showed that alumina-pillared montmorillonite with 1.83nm of basal spacing exhibited a high catalytic activity for the isomerization of α-pinene, and 97.4% conversion of α-pinene was achievedat 373K for 3hwhen the mass ratio of catalyst to α-pinene was 1/10.


2013 ◽  
Vol 745-746 ◽  
pp. 53-59 ◽  
Author(s):  
Si Qun Chen ◽  
Zi Cai Sun ◽  
Xiao Wei Wang ◽  
Xiao Hui Chen ◽  
Jian Jun Chen

In this work, Poly (methy methacrylate-styrene-divinyl benzene) (MMA-S-DVB) microspheres were prepared by suspension polymerization approach in the presence of n-dodecane as porogenic agent. Various types of measurements,such as binocular biological microscope with micrometer, fourier transform infrared (FT-IR) and N2 absorption analysis (BET) were conducted to characterize the MMA-S-DVB microspheres. The effect of the amount of surfactants (PVA and NaCl), porogenic agent and crossing agent (DVB) on the morphology of microspheres was investigated and mass ratio of oil/water and the stirring speed were also discussed. Finally, according to the experimental results,the optimum experimental condition was obtained as follow: the mass ratio of S:MMA:DVB=3:3:4, the concentration of PVA in the water phase is 2.2 wt %, the concentration of NaCl is 5 wt %, the mass ratio of oil/water is 1:11, the stirring speed is 500rpm.Via controlling the optimum reaction conditions of the suspension polymerization, the crosslinked macroporous resin polymer MMA-S-DVB microspheres with excellent sphericity and controllable diameter in a range of 200~400 μm can be gained.


2014 ◽  
Vol 1033-1034 ◽  
pp. 7-11
Author(s):  
Yan Bai ◽  
Xuan Tang ◽  
Kui Zhou ◽  
Cun She Zhang

bis(2-chloroethoxy)methane was synthesized by the reaction of ethylene chlorohydrin and Oligopolyformaldehyde under sulfuric acid catalysis. optimum reaction conditions obtained were as follows: the molar ratio of Oligopolyformaldehyde and ethylene chlorohydrin of 1.2:2, catalyst dosage was 5‰mass fraction of ethylene chlorohydrin, toluene were chose as water-carrying agent, All reactant were refluxed on temperature of 110°C until no water generated. Under the optimum conditions the yield of bis(2-chloroethoxy)methane was 97.7%. The structure of bis(2-chloroethoxy)methane were conformed by ATR IR. The purity of bis(2-chloroethoxy)methane were 99% by gas chromatographic detection.


2014 ◽  
Vol 1015 ◽  
pp. 610-614
Author(s):  
Ying Wang ◽  
Cun Zhou ◽  
Guo Zheng ◽  
Yu Sun

Lubricant base oil is an environmentally friendly lubricant with good lubricity and biodegradability. The thermostability and stability of rapeseed oil get improved through chemical modification. Fatty acid methyl ester (FAME),prepared by rapeseed oil as starting material with methanol by transesterification,the composition of FAME was detected by gas chromatograph-mass spectrometer (GC-MS).Trimethylolpropane (TMP) esters of fatty acids were synthesized by transesterifying FAME with TMP using zinc oxide as catalyst. The structures of products were characterized by mean of FTIR. The reaction conditions were studied and optimized, the optimum conditions were as follows: the temperature at 140°C~150°C, the reactant mass ratio of 1:9, the reaction time for 6 h, the mass content of catalyst of 0.5%.The thermal stability of product was conducted by thermogravimetry (TG) .It could be concluded that TMP esters of fatty acids possess better thermal stability.


Author(s):  
Aysha Hamad Alneyadi ◽  
Iltaf Shah ◽  
Synan F. AbuQamar ◽  
Syed Salman Ashraf

Enzymatic degradation of organic pollutants is a new and promising remediation approach. Peroxidases are one of the most commonly used classes of enzymes to degrade organic pollutants. However, it is generally assumed that all peroxidases behave similarly and produce similar degradation products. In this study, we conducted detailed studies of the degradation of a model aromatic pollutant, Sulforhodamine B dye (SRB dye), using two peroxidases—soybean peroxidase (SBP) and chloroperoxidase (CPO). Our results show that these two related enzymes had different optimum conditions (pH, temperature, H2O2 concentration...etc.) for efficiently degrading SRB dye. High-performance liquid chromatography and LC-mass spectrometry analyses confirmed that both SBP and CPO transformed the SRB dye into low molecular weight intermediates. While most of the intermediates produced by the two enzymes were the same, the CPO treatment produced at least one different intermediate. Furthermore, toxicological evaluation using lettuce (Lactuca sativa) seeds demonstrated that the SBP-based treatment was able to eliminate the phytotoxicity of SRB dye, but the CPO-based treatment did not. Our results show, for the first time, that while both of these related enzymes can be used to efficiently degrade organic pollutants, they have different optimum reaction conditions and may not be equally efficient in detoxification of organic pollutants.


2016 ◽  
Vol 26 (1) ◽  
pp. 107
Author(s):  
Linda N. Zavaleta Palomino

RESUMEN El objetivo de esta investigación es conocer el proceso de producción óptimo para generar biodiesel, por transesterificación alcalina, a partir de aceites vegetales residuales de los restaurantes del distrito de San Borja, Lima- Perú. Para ello, se analizó el aceite vegetal residual recolectado, se determinó la concentración de metanol (%v/v), la concentración de hidróxido de potasio (%p/p), el tiempo de reacción óptimo, y por último se determinó la calidad del biodiesel producido.Los resultados mostraron que es posible realizar biodiesel con el aceite recolectado, ya que su grado de acidez (1,56%) fue inferior al 3%. Las condiciones óptimas para lograr la máxima conversión de la reacción se obtuvieron cuando se usó una concentración de metanol del 30%, una concentración de hidróxido de potasio del 0,4% respecto al peso del aceite y un tiempo de reacción de 3 hrs 30 min a una temperatura constante de 60°C. Bajo estas condiciones se obtuvo un rendimiento de biodiesel del 85,97%. Al biodiesel obtenido bajo las mejores condiciones de reacción se le analizaron cuatro propiedades del combustible, encontrándose que la viscosidad cinemática fue 5,5 cSt, el número de acidez fue 0,68 mgKOH/g, la ceniza sulfatada fue 0,0478 % y el carbón conradson fue 0,142%.Palabras claves.- Transesterificación alcalina, grado de acidez, máxima conversión número de acidez, viscosidad cinemática, ceniza sulfatada, carbón conradson y postratamiento del biodiesel. ABSTRACT In this paper, it is presented an experiment carried out with the objective of knowing the optimum production process in order to generate bio diesel by alkaline transesterification, from residual vegetable oils from the Restaurants in San Borja. In order to do so, first of all of the residual vegetal oil collected was analyzed, then it was determined the concentration of methanol (%v/v), the concentration of potassium hydroxide (%p/p) and the optimum reaction time, and lastly, it was determined the bio diesel quality produced.The results showed that it is possible to generate biodiesel from the collected oil, due to its grade of acidity (1,56%) was lower than 3%. The optimum conditions to get the maximum conversion of the reaction were achieved when it was used a methanol concentration of 30%, a concentration of potassium hydroxide of 0,4% regarding the weight of the oil and a reaction time of 3:30 minutes at a constant temperature of 60%. Under these conditions it was obtained a performance of biodiesel of 85,97%. Biodiesel obtained under the best reaction conditions will be analyzed four fuel properties, finding that the kinematic viscosity was 5,5 cSt, the acid number was 0,68 mg KOH / g, the sulfated ash was 0,0478% and Conradson Carbon was 0,142%. Key Words.- Alkaline Transesterification, grade of acidity, maximum conversion, number of acidity, kinematic viscosity,    sulfated ash, conradson carbon and after treatment of biodiesel


2013 ◽  
Vol 821-822 ◽  
pp. 1014-1018
Author(s):  
Meng Zheng ◽  
Hong Jun Zhang

Starch (St) and acrylamide (AM) copolymers was prepared by aqueous solution polymerization, which as raw material finished hydroxyl methylation reaction, then condensation dehydration with dicyanodiamine, cationic starch graft flocculant is synthetized. Hydroxyl methylation reaction optimum conditions are: temperature T=50°C; pH=10; n (HCHO) : n (St-AM)=1.1:1; reaction time t=2h; Dehydration optimum reaction conditions: mole ratio of 1:1; pH = 4; t=3 h; temperature T=45°C. Intrinsic viscosity number of product is 1023 ml/g, cationizing degree is 50%. Treatment performance for oil wastewater is investigated by using cationic starch graft flocculant compound with the inorganic polymeric coagulant polyferric chloride, the experimental results show that: in wastewater pH=7, the amount of inorganic polymeric coagulant polyferric chloride is 2000 mg/L, the amount of starch graft flocculant is 500 mg/L, the treatment effect is the best, oil content and suspension content are less than 10 mg/L, which reach Daqing oilfield re-injection standard.


Sign in / Sign up

Export Citation Format

Share Document