scholarly journals Multifunctional Nanostructures and Nanopocket Particles Fabricated by Nanoimprint Lithography

Nanomaterials ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1790
Author(s):  
Stefan Schrittwieser ◽  
Michael J. Haslinger ◽  
Tina Mitteramskogler ◽  
Michael Mühlberger ◽  
Astrit Shoshi ◽  
...  

Nanostructured surfaces and nanoparticles are already widely employed in many different fields of research, and there is an ever-growing demand for reliable, reproducible and scalable nanofabrication methods. This is especially valid for multifunctional nanomaterials with physical properties that are tailored for specific applications. Here, we report on the fabrication of two types of nanomaterials. Specifically, we present surfaces comprising a highly uniform array of elliptical pillars as well as nanoparticles with the shape of nanopockets, possessing nano-cavities. The structures are fabricated by nanoimprint lithography, physical and wet-chemical etching and sputter deposition of thin films of various materials to achieve a multifunctional nanomaterial with defined optical and magnetic properties. We show that the nanopockets can be transferred to solution, yielding a nanoparticle dispersion. All fabrication steps are carefully characterized by microscopic and optical methods. Additionally, we show optical simulation results that are in good agreement with the experimentally obtained data. Thus, this versatile method allows to fabricate nanomaterials with specific tailor-made physical properties that can be designed by modelling prior to the actual fabrication process. Finally, we discuss possible application areas of these nanomaterials, which range from biology and medicine to electronics, photovoltaics and photocatalysis.

1960 ◽  
Vol 33 (2) ◽  
pp. 335-341
Author(s):  
Walter Scheele ◽  
Karl-Heinz Hillmer

Abstract As a complement to earlier investigations, and in order to examine more closely the connection between the chemical kinetics and the changes with vulcanization time of the physical properties in the case of vulcanization reactions, we used thiuram vulcanizations as an example, and concerned ourselves with the dependence of stress values (moduli) at different degrees of elongation and different vulcanization temperatures. We found: 1. Stress values attain a limiting value, dependent on the degree of elongation, but independent of the vulcanization temperature at constant elongation. 2. The rise in stress values with the vulcanization time is characterized by an initial delay, which, however, is practically nonexistent at higher temperatures. 3. The kinetics of the increase in stress values with vulcanization time are both qualitatively and quantitatively in accord with the dependence of the reciprocal equilibrium swelling on the vulcanization time; both processes, after a retardation, go according to the first order law and at the same rate. 4. From the temperature dependence of the rate constants of reciprocal equilibrium swelling, as well as of the increase in stress, an activation energy of 22 kcal/mole can be calculated, in good agreement with the activation energy of dithiocarbamate formation in thiuram vulcanizations.


2021 ◽  
Author(s):  
Davood Hajitaghi Tehrani ◽  
Mehdi Solaimani ◽  
Mahboubeh Ghalandari ◽  
Bahman Babayar Razlighi

Abstract In the current research, the propagation of solitons in a saturable PT-symmetric fractional system is studied by solving nonlinear fractional Schrödinger equation. Three numerical methods are employed for this purpose, namely Monte Carlo based Euler-Lagrange variational schema, split-step method, and extrapolation approach. The results show good agreement and accuracy. The effect of different parameters such as potential depth, Levy indices, and saturation parameter, on the physical properties of the systems such as maximum intensity and soliton width oscillations are considered.


2017 ◽  
Vol 18 (1) ◽  
pp. 58-63
Author(s):  
N.Yu. Filonenko

In the paper the physical properties and thermodynamic functions of borides Х2В (Х=W, Mo, Mn, Fe, Co, Ni та Cr) are studied with accounting for fluctuation processes. We use the microstructure analysis, the X-ray structural and the durometric analyses to determine the physical properties of alloys. In the paper it is determined the phase composition and physical properties of borides. In this paper for the first time it is determined the thermodynamic functions of borides using the Hillert and Staffansson model with accounting for the first degree approximation of high-temperature expansion for the free energy potential of binary alloys. We obtain the temperature dependences for such thermodynamic functions as Gibbs free energy, entropy, enthalpy and heat capacity Ср along with their values at the formation temperature for Х2В (Х=W, Mo, Mn, Fe, Co, Ni та Cr). The approach under consideration enables to give more thorough from the thermodynamic point of view description of borides formed from the liquid. The outcomes of the thermodynamic function calculation for borides are in good agreement with experimental data and results of other authors.


2019 ◽  
Vol 8 (6) ◽  
pp. 491-497
Author(s):  
Na Yang ◽  
Chiemi Oka ◽  
Seiichi Hata ◽  
Junpei Sakurai

Abstract We proposed a fabrication of nanoimprinted textures on a front glass/transparent conductive oxide interface for dye-sensitized solar cells (DSSCs). These textures were fabricated through polydimethylsiloxane (PDMS) nanoimprint lithography on organosilsesquioxane solution. The texture structures were estimated via optical simulation. Master molds were anodic aluminum oxide templates with nano-texture (N-Tx) and micro-nano double texture (D-Tx). Meanwhile, replicate molds used a hard PDMS. Fluorine-doped tin oxide and titanium dioxide were deposited on textured glass substrates to generate electrodes for DSSCs. Unlike the DSSCs without texture, textured DSSCs realized 11.4% (N-Tx) and 10% (D-Tx) improvement in conversion efficiency.


2012 ◽  
Vol 18 (2) ◽  
pp. 255-262 ◽  
Author(s):  
Mehdi Asadollahzadeh ◽  
Jaber Safdari ◽  
Ali Haghighi-Asl ◽  
Meisam Torab-Mostaedi

Dispersed phase hold-up has been measured in a 76.2 mm diameter pulsed packed column for four different liquid-liquid systems. The effects of pulsation intensity, phase ratio, and packing characteristic on the hold-up have been investigated under a variety of operating conditions. The dispersed phase axial hold-up shows a strong non-uniformity, depending on the operating conditions. The results indicated that the characteristic velocity approach is applicable to this type of extraction column for analysis of hold-up. An empirical correlation is derived for prediction of the hold-up in terms of operating variables, physical properties of the systems, and packing geometry. Good agreement between prediction and experiments was observed for all investigated operating conditions.


2014 ◽  
Vol 979 ◽  
pp. 315-318 ◽  
Author(s):  
W. Siriprom ◽  
K. Chantarasunthon ◽  
K. Teanchai

This work aims at characterizing the thermal and physical properties of chitosan. The samples were evaluated for potentiality to use as raw material for biodegradable films raw material. Their thermal and physical properties have been also discussed in detail which Fourier Transform Infrared Spectroscopy (FTIR), Thermo-Gravimetric Analysis (TGA), Energy Dispersive X-Ray Fluorescence (EDXRF) and X-Ray Diffraction (XRD), respectively. The result of the XRD pattern indicated the sample has amorphous-crystalline structure and FTIR results confirmed the formation of intermolecular hydrogen bonding between the amino and hydroxyl groups of the sample. In good agreement between the EDXRF and TGA results, noticed that the removal of moisture and volatile material.


1947 ◽  
Vol 25b (4) ◽  
pp. 381-386 ◽  
Author(s):  
D. E. Douglas ◽  
C. A. Winkler

Cyanogen chloride, prepared by the method of Jennings and Scott, has been fractionally recrystallized to a constant freezing point of −6.90 °C. Vapour pressure values for material purified in this way are in good agreement with the data of Klemenc and Wagner. The activation energy for the hydrolysis of cyanogen chloride at pH 4 to 6 between 0° and 50 °C. is approximately 21 kcal. per mole.


2011 ◽  
Vol 172-174 ◽  
pp. 973-978 ◽  
Author(s):  
Pavel A. Korzhavyi ◽  
Inna Soroka ◽  
Mats Boman ◽  
Börje Johansson

We apply density functional perturbation theory together with experimental studies in order to investigate the structure and physical properties of possible stable and metastable copper(I) compounds with oxygen and hydrogen. Copper(I) hydride, CuH, is found to be a metastable phase which decomposes at ambient conditions and exhibiting a semiconducting gap in the electronic spectrum. The calculated structure and phonon spectra are found to be in good agreement with experimental data. The phonon spectra of a novel metastable phase, copper(I) hydroxide, are also determined.


2013 ◽  
Vol 566 ◽  
pp. 95-98 ◽  
Author(s):  
Takayuki Kodera ◽  
Fuminari Isobe ◽  
Takashi Ogihara

Plate-like LiMnPO4particles were prepared by polyol method. The chemical and physical properties of plate-like LiMnPO4particles were characterized by XRD and SEM. The thickness of plate-like LiMnPO4particles was approximately 35 nm. XRD pattern of plate-like LiMnPO4was good agreement with orthorhombic olivine structure. The first discharge capacity of C/LiMnPO4cathode was approximately 95 mAh/g. 99.9 % of initial discharge capacity was maintained after 100 cycles.


1997 ◽  
Vol 12 (9) ◽  
pp. 2234-2248 ◽  
Author(s):  
E. Bonnotte ◽  
P. Delobelle ◽  
L. Bornier ◽  
B. Trolard ◽  
G. Tribillon

Two optical methods are presented for the mechanical characterization of thin films, namely real time holographic interferometry and a fringe projection method called “contouring.” These two methods are coupled to the interferometry by the phase measurements, thus allowing the displacement field to be measured at all points on the membrane. We discuss the solutions retained in terms of their precision and sensitivity. These methods are then applied to membrane bulging tests, a type of test that is widely used in micro-mechanical studies. The measurements are performed on silicon single crystal and the results are compared to the solutions calculated by finite element methods. In both cases, the good agreement between theory and experiments allows the experimental apparatus to be validated.


Sign in / Sign up

Export Citation Format

Share Document