scholarly journals A Novel Micronutrient Blend Mimics Calorie Restriction Transcriptomics in Multiple Tissues of Mice and Increases Lifespan and Mobility in C. elegans

Nutrients ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 486
Author(s):  
Eva Serna ◽  
Angela Mastaloudis ◽  
Patricia Martorell ◽  
Steven M. Wood ◽  
Shelly N. Hester ◽  
...  

Background: We previously described a novel micronutrient blend that behaves like a putative calorie restriction mimetic. The aim of this paper was to analyze the beneficial effects of our micronutrient blend in mice and C. elegans, and compare them with calorie restriction. Methods: Whole transcriptomic analysis was performed in the brain cortex, skeletal muscle and heart in three groups of mice: old controls (30 months), old + calorie restriction and old + novel micronutrient blend. Longevity and vitality were tested in C. elegans. Results: The micronutrient blend elicited transcriptomic changes in a manner similar to those in the calorie-restricted group and different from those in the control group. Subgroup analysis revealed that nuclear hormone receptor, proteasome complex and angiotensinogen genes, all of which are known to be directly related to aging, were the most affected. Furthermore, a functional analysis in C. elegans was used. We found that feeding C. elegans the micronutrient blend increased longevity as well as vitality. Conclusions: We describe a micronutrient supplement that causes similar changes (transcriptomic and promoting longevity and vitality) as a calorie restriction in mice and C. elegans, respectively, but further studies are required to confirm these effects in humans.

2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Touran Mahmoudi ◽  
Zahra Lorigooini ◽  
Mahmoud Rafieian-kopaei ◽  
Mehran Arabi ◽  
Zahra Rabiei ◽  
...  

Abstract Background Previous studies have shown that seizures can cause cognitive disorders. On the other hand, the Curcuma zedoaria (CZ) has beneficial effects on the nervous system. However, there is little information on the possible effects of the CZ extract on seizures. The aim of this study was to investigate the possible effects of CZ extract on cognitive impairment and oxidative stress induced by epilepsy in rats. Methods Rats were randomly divided into different groups. In all rats (except the sham group), kindling was performed by intraperitoneal injection of pentylenetetrazol (PTZ) at a dose of 35 mg/kg every 48 h for 14 days. Positive group received 2 mg/kg diazepam + PTZ; treatment groups received 100, 200 or 400 mg/kg CZ extract + PTZ; and one group received 0.5 mg/kg flumazenil and CZ extract + PTZ. Shuttle box and Morris Water Maze tests were used to measure memory and learning. On the last day of treatments PTZ injection was at dose of 60 mg/kg, tonic seizure threshold and mortality rate were recorded in each group. After deep anesthesia, blood was drawn from the rats’ hearts and the hippocampus of all rats was removed. Results Statistical analysis of the data showed that the CZ extract significantly increased the tonic seizure threshold and reduced the pentylenetetrazol-induced mortality and the extract dose of 400 mg/kg was selected as the most effective dose compared to the other doses. It was also found that flumazenil (a GABAA receptor antagonist) reduced the tonic seizure threshold compared to the effective dose of the extract. The results of shuttle box and Morris water maze behavioral tests showed that memory and learning decreased in the negative control group and the CZ extract treatment improved memory and learning in rats. The CZ extract also increased antioxidant capacity, decreased MDA and NO in the brain and serum of pre-treated groups in compared to the negative control group. Conclusion: It is concluded that the CZ extract has beneficial effects on learning and memory impairment in PTZ-induced epilepsy model, which has been associated with antioxidant effects in the brain or possibly exerts its effects through the GABAergic system.


2017 ◽  
Vol 36 (11) ◽  
pp. 1212-1221 ◽  
Author(s):  
RZ Hamza ◽  
NS El-Shenawy

Oxidative stress caused by sodium valproate (SV) is known to play a key role in the pathogenesis of brain tissue. The present study was designed to evaluate the protective effect of l-cysteine (LC) on the antioxidants of brain tissue of rats. The animals were divided into six groups: control group 1 was treated with saline as vehicle, groups 2 and 3 were treated with low and high doses of SV (100 and 500 mg/kg, respectively), group 4 was treated with LC (100 mg/kg), and groups 5 and 6 were treated with low-dose SV + LC and high-dose SV + LC, respectively. All the groups were treated orally by gastric tube for 30 successive days. Some antioxidant parameters were determined. Brain tissue (cerebral cortex) of SV-treated animals showed an increase in lipid peroxidation (LPO) and reduction in activity of enzymatic antioxidant and total antioxidant levels. Histopathological examination of cerebral cortex of SV rats showed astrocytic swelling, inflammation, and necrosis. After 4 weeks of the combination treatment of SV and LC daily, results showed significant improvement in the activity of cathepsin marker enzymes and restored the structure of the brain. LC was able to ameliorate oxidative stress deficits observed in SV rats. LC decreased LPO level and was also able to restore the activity of antioxidant enzymes as well as structural deficits observed in the brain of SV animals. The protective effect of LC in SV-treated rats is mediated through attenuation of oxidative stress, suggesting a therapeutic role for LC in individuals treated with SV.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
S. Mojtaba Mousavi ◽  
Saeed Niazmand ◽  
Mahmoud Hosseini ◽  
Zarha Hassanzadeh ◽  
Hamid Reza Sadeghnia ◽  
...  

Objective.The effects of hydroalcoholic extract ofTeucrium poliumand metformin on diabetes-induced memory impairment and brain tissues oxidative damage were investigated.Methods.The rats were divided into: (1) Control, (2) Diabetic, (3) Diabetic-Extract 100 (Dia-Ext 100), (4) Diabetic-Extract 200 (Dia-Ext 200), (5) Diabetic-Extract 400 (Dia-Ext 400), and (6) Diabetic-Metformin (Dia-Met). Groups 3–6 were treated by 100, 200, and 400 mg/kg of the extract or metformin, respectively, for 6 weeks (orally).Results. In passive avoidance test, the latency to enter the dark compartment in Diabetic group was lower than that of Control group (P<0.01). In Dia-Ext 100, Dia-Ext 200, and Dia-Ext 400 and Metformin groups, the latencies were higher than those of Diabetic group (P<0.01). Lipid peroxides levels (reported as malondialdehyde, MDA, concentration) in the brain of Diabetic group were higher than Control (P<0.001). Treatment by all doses of the extract and metformin decreased the MDA concentration (P<0.01).Conclusions.The results of present study showed that metformin and the hydroalcoholic extract ofTeucrium poliumprevent diabetes-induced memory deficits in rats. Protection against brain tissues oxidative damage might have a role in the beneficial effects of the extract and metformin.


2006 ◽  
Vol 22 (5) ◽  
pp. 211-216 ◽  
Author(s):  
Halis Köylü ◽  
Hakan Mollaoglu ◽  
Fehmi Ozguner ◽  
Mustafa Nazýroölu ◽  
Namýk Delibap

Microwaves (MW) from cellular phones may affect biological systems by increasing free radicals, which may enhance lipid peroxidation levels of the brain, thus leading to oxidative damage. Melatonin is synthesized in and secreted by the pineal gland at night and exhibits anti-oxidant properties. Several studies suggest that supplementation with anti-oxidant can influence MW-induced brain damage. The present study was designed to determine the effects of MW on the brain lipid peroxidation system, and the possible protective effects of melatonin on brain degeneration induced by MW. Twenty-eight Sprague-Dawley male rats were randomly divided into three groups as follows: (1) sham-operated control group (N-8); (2) study 900-MHz MW-exposed group (N-8); and (3) 900-MHz MW-exposed-melatonin (100 mg/kg sc before daily MW exposure treated group) (N-10). Cortex brain and hippocampus tissues were removed to study the levels of lipid peroxidation as malonyl dialdehyde. The levels of lipid peroxidation in the brain cortex and hippocampus increased in the MW group compared with the control group, although the levels in the hippocampus were decreased by MW-melatonin administration. The brain cortex lipid peroxidation levels were unaffected by melatonin treatment. We conclude that melatonin may prevent MW-induced oxidative changes in the hippocampus by strengthening the anti-oxidant defense system, by reducing oxidative stress products.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Elite Possik ◽  
Clémence Schmitt ◽  
Anfal Al-Mass ◽  
Ying Bai ◽  
Laurence Côté ◽  
...  

AbstractMetabolic stress due to nutrient excess and lipid accumulation is at the root of many age-associated disorders and the identification of therapeutic targets that mimic the beneficial effects of calorie restriction has clinical importance. Here, using C. elegans as a model organism, we study the roles of a recently discovered enzyme at the heart of metabolism in mammalian cells, glycerol-3-phosphate phosphatase (G3PP) (gene name Pgp) that hydrolyzes glucose-derived glycerol-3-phosphate to glycerol. We identify three Pgp homologues in C. elegans (pgph) and demonstrate in vivo that their protein products have G3PP activity, essential for glycerol synthesis. We demonstrate that PGPH/G3PP regulates the adaptation to various stresses, in particular hyperosmolarity and glucotoxicity. Enhanced G3PP activity reduces fat accumulation, promotes healthy aging and acts as a calorie restriction mimetic at normal food intake without altering fertility. Thus, PGP/G3PP can be considered as a target for age-related metabolic disorders.


Author(s):  
Zafer Sahin ◽  
Alpaslan Ozkurkculer ◽  
Omer Faruk Kalkan ◽  
Ahmet Ozkaya ◽  
Aynur Koc ◽  
...  

Abstract. Alterations of essential elements in the brain are associated with the pathophysiology of many neuropsychiatric disorders. It is known that chronic/overwhelming stress may cause some anxiety and/or depression. We aimed to investigate the effects of two different chronic immobilization stress protocols on anxiety-related behaviors and brain minerals. Adult male Wistar rats were divided into 3 groups as follows ( n = 10/group): control, immobilization stress-1 (45 minutes daily for 7-day) and immobilization stress-2 (45 minutes twice a day for 7-day). Stress-related behaviors were evaluated by open field test and forced swimming test. In the immobilization stress-1 and immobilization stress-2 groups, percentage of time spent in the central area (6.38 ± 0.41% and 6.28 ± 1.03% respectively, p < 0.05) and rearing frequency (2.75 ± 0.41 and 3.85 ± 0.46, p < 0.01 and p < 0.05, respectively) were lower, latency to center area (49.11 ± 5.87 s and 44.92 ± 8.04 s, p < 0.01 and p < 0.01, respectively), were higher than the control group (8.65 ± 0.49%, 5.37 ± 0.44 and 15.3 ± 3.32 s, respectively). In the immobilization stress-1 group, zinc (12.65 ± 0.1 ppm, p < 0.001), magnesium (170.4 ± 1.7 ppm, p < 0.005) and phosphate (2.76 ± 0.1 ppm, p < 0.05) levels were lower than the control group (13.87 ± 0.16 ppm, 179.31 ± 1.87 ppm and 3.11 ± 0.06 ppm, respectively). In the immobilization stress-2 group, magnesium (171.56 ± 1.87 ppm, p < 0.05), phosphate (2.44 ± 0.07 ppm, p < 0.001) levels were lower, and manganese (373.68 ± 5.76 ppb, p < 0.001) and copper (2.79 ± 0.15 ppm, p < 0.05) levels were higher than the control group (179.31 ± 1.87 ppm, 3.11 ± 0.06 ppm, 327.25 ± 8.35 ppb and 2.45 ± 0.05 ppm, respectively). Our results indicated that 7-day chronic immobilization stress increased anxiety-related behaviors in both stress groups. Zinc, magnesium, phosphate, copper and manganese levels were affected in the brain.


2019 ◽  
Vol 25 (23) ◽  
pp. 2555-2568 ◽  
Author(s):  
Rajeev Taliyan ◽  
Sarathlal K. Chandran ◽  
Violina Kakoty

Neurodegenerative disorders are the most devastating disorder of the nervous system. The pathological basis of neurodegeneration is linked with dysfunctional protein trafficking, mitochondrial stress, environmental factors and aging. With the identification of insulin and insulin receptors in some parts of the brain, it has become evident that certain metabolic conditions associated with insulin dysfunction like Type 2 diabetes mellitus (T2DM), dyslipidemia, obesity etc., are also known to contribute to neurodegeneration mainly Alzheimer’s Disease (AD). Recently, a member of the fibroblast growth factor (FGF) superfamily, FGF21 has proved tremendous efficacy in diseases like diabetes mellitus, obesity and insulin resistance (IR). Increased levels of FGF21 have been reported to exert multiple beneficial effects in metabolic syndrome. FGF21 receptors are present in certain areas of the brain involved in learning and memory. However, despite extensive research, its function as a neuroprotectant in AD remains elusive. FGF21 is a circulating endocrine hormone which is mainly secreted by the liver primarily in fasting conditions. FGF21 exerts its effects after binding to FGFR1 and co-receptor, β-klotho (KLB). It is involved in regulating energy via glucose and lipid metabolism. It is believed that aberrant FGF21 signalling might account for various anomalies like neurodegeneration, cancer, metabolic dysfunction etc. Hence, this review will majorly focus on FGF21 role as a neuroprotectant and potential metabolic regulator. Moreover, we will also review its potential as an emerging candidate for combating metabolic stress induced neurodegenerative abnormalities.


2020 ◽  
Vol 23 (5) ◽  
pp. 402-410 ◽  
Author(s):  
Lin-Zi Li ◽  
Shan-Shan Lei ◽  
Bo Li ◽  
Fu-Chen Zhou ◽  
Ye-Hui Chen ◽  
...  

Aim and Objective: The Dendrobium officinalis flower (DOF) is popular in China due to common belief in its anti-aging properties and positive effects on “nourish yin”. However, there have been relatively few confirmatory pharmacological experiments conducted to date. The aim of this work was to evaluate whether DOF has beneficial effects on learning and memory in senescent rats, and, if so, to determine its potential mechanism of effect. Materials and Methods: SD rats were administrated orally DOF at a dose of 1.38, or 0.46 g/kg once a day for 8 weeks. Two other groups included a healthy untreated control group and a senescent control group. During the 7th week, a Morris water maze test was performed to assess learning and memory. At the end of the experiment, serum and brain samples were collected to measure concentrations of antioxidant enzymes, including malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GSH-Px) in serum, and the neurotransmitters, including γ-aminobutyric acid (γ-GABA), Glutamic (Glu), and monoamine oxidase B (MAO-B) in the brain. Histopathology of the hippocampus was assessed using hematoxylin-eosin (H&E) staining. Results: The results suggested that treatment with DOF improved learning as measured by escape latency, total distance, and target quadrant time, and also increased levels of γ-GABA in the brain. In addition, DOF decreased the levels of MDA, Glu, and MAO-B, and improved SOD and GSHPx. Histopathological analysis showed that DOF also significantly reduced structural lesions and neurodegeneration in the hippocampus relative to untreated senescent rats. Conclusion: DOF alleviated brain aging and improved the spatial learning abilities in senescent rats, potentially by attenuating oxidative stress and thus reducing hippocampal damage and balancing the release of neurotransmitters.


Sign in / Sign up

Export Citation Format

Share Document