scholarly journals Omega-3 Polyunsaturated Fatty Acids Inhibit the Function of Human URAT1, a Renal Urate Re-Absorber

Nutrients ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1601 ◽  
Author(s):  
Hiroki Saito ◽  
Yu Toyoda ◽  
Tappei Takada ◽  
Hiroshi Hirata ◽  
Ami Ota-Kontani ◽  
...  

The beneficial effects of fatty acids (FAs) on human health have attracted widespread interest. However, little is known about the impact of FAs on the handling of urate, the end-product of human purine metabolism, in the body. Increased serum urate levels occur in hyperuricemia, a disease that can lead to gout. In humans, urate filtered by the glomerulus of the kidney is majorly re-absorbed from primary urine into the blood via the urate transporter 1 (URAT1)-mediated pathway. URAT1 inhibition, thus, contributes to decreasing serum urate concentration by increasing net renal urate excretion. Here, we investigated the URAT1-inhibitory effects of 25 FAs that are commonly contained in foods or produced in the body. For this purpose, we conducted an in vitro transport assay using cells transiently expressing URAT1. Our results showed that unsaturated FAs, especially long-chain unsaturated FAs, inhibited URAT1 more strongly than saturated FAs. Among the tested unsaturated FAs, eicosapentaenoic acid, α-linolenic acid, and docosahexaenoic acid exhibited substantial URAT1-inhibitory activities, with half maximal inhibitory concentration values of 6.0, 14.2, and 15.2 μM, respectively. Although further studies are required to investigate whether the ω-3 polyunsaturated FAs can be employed as uricosuric agents, our findings further confirm FAs as nutritionally important substances influencing human health.

Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1111
Author(s):  
Maria P. Mollica ◽  
Giovanna Trinchese ◽  
Fabiano Cimmino ◽  
Eduardo Penna ◽  
Gina Cavaliere ◽  
...  

Milk contains several important nutrients that are beneficial for human health. This review considers the nutritional qualities of essential fatty acids (FAs), especially omega-3 (ω-3) and omega-6 (ω-6) polyunsaturated fatty acids (PUFAs) present in milk from ruminant and non-ruminant species. In particular, the impact of milk fatty acids on metabolism is discussed, including its effects on the central nervous system. In addition, we presented data indicating how animal feeding—the main way to modify milk fat composition—may have a potential impact on human health, and how rearing and feeding systems strongly affect milk quality within the same animal species. Finally, we have presented the results of in vivo studies aimed at supporting the beneficial effects of milk FA intake in animal models, and the factors limiting their transferability to humans were discussed.


Nutrients ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 3198 ◽  
Author(s):  
Francesco Pecora ◽  
Federica Persico ◽  
Alberto Argentiero ◽  
Cosimo Neglia ◽  
Susanna Esposito

Viral infections are a leading cause of morbidity and mortality worldwide, and the importance of public health practices including handwashing and vaccinations in reducing their spread is well established. Furthermore, it is well known that proper nutrition can help support optimal immune function, reducing the impact of infections. Several vitamins and trace elements play an important role in supporting the cells of the immune system, thus increasing the resistance to infections. Other nutrients, such as omega-3 fatty acids, help sustain optimal function of the immune system. The main aim of this manuscript is to discuss of the potential role of micronutrients supplementation in supporting immunity, particularly against respiratory virus infections. Literature analysis showed that in vitro and observational studies, and clinical trials, highlight the important role of vitamins A, C, and D, omega-3 fatty acids, and zinc in modulating the immune response. Supplementation with vitamins, omega 3 fatty acids and zinc appears to be a safe and low-cost way to support optimal function of the immune system, with the potential to reduce the risk and consequences of infection, including viral respiratory infections. Supplementation should be in addition to a healthy diet and fall within recommended upper safety limits set by scientific expert bodies. Therefore, implementing an optimal nutrition, with micronutrients and omega-3 fatty acids supplementation, might be a cost-effective, underestimated strategy to help reduce the burden of infectious diseases worldwide, including coronavirus disease 2019 (COVID-19).


Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3864
Author(s):  
Karla Fabiola Corral-Jara ◽  
Laura Cantini ◽  
Nathalie Poupin ◽  
Tao Ye ◽  
Jean Paul Rigaudière ◽  
...  

Insulin resistance decreases the ability of insulin to inhibit hepatic gluconeogenesis, a key step in the development of metabolic syndrome. Metabolic alterations, fat accumulation, and fibrosis in the liver are closely related and contribute to the progression of comorbidities, such as hypertension, type 2 diabetes, or cancer. Omega 3 (n-3) polyunsaturated fatty acids, such as eicosapentaenoic acid (EPA), were identified as potent positive regulators of insulin sensitivity in vitro and in animal models. In the current study, we explored the effects of a transgenerational supplementation with EPA in mice exposed to an obesogenic diet on the regulation of microRNAs (miRNAs) and gene expression in the liver using high-throughput techniques. We implemented a comprehensive molecular systems biology approach, combining statistical tools, such as MicroRNA Master Regulator Analysis pipeline and Boolean modeling to integrate these biochemical processes. We demonstrated that EPA mediated molecular adaptations, leading to the inhibition of miR-34a-5p, a negative regulator of Irs2 as a master regulatory event leading to the inhibition of gluconeogenesis by insulin during the fasting–feeding transition. Omics data integration provided greater biological insight and a better understanding of the relationships between biological variables. Such an approach may be useful for deriving innovative data-driven hypotheses and for the discovery of molecular–biochemical mechanistic links.


2019 ◽  
Vol 10 ◽  
pp. 204062231986480 ◽  
Author(s):  
Hristina Kocic ◽  
Giovanni Damiani ◽  
Bojana Stamenkovic ◽  
Michael Tirant ◽  
Andrija Jovic ◽  
...  

Nutrigenomic DNA reprogramming in different chronic diseases and cancer has been assessed through the stimulation of gene expression and mRNA synthesis versus DNA silencing by CpG DNA modification (methylation); histone modification (acetylation, methylation) and expression of small noncoding RNAs, known as microRNAs (miRNAs). With regard to the specific nutrigenomic effects in psoriasis, the influence of specific diets on inflammatory cell signaling transcriptional factors such as nuclear factor (NF)-κB and Wnt signaling pathways, on disease-related specific cytokine expression, pro/antioxidant balance, keratinocyte proliferation/apoptosis and on proliferation/differentiation ratio have been documented; however, the influence of dietary compounds on the balance between ‘good and bad’ miRNA expression has not been considered. This review aims to summarize knowledge about aberrant microRNAs expression in psoriasis and to emphasize the potential impact of some dietary compounds on endogenous miRNA synthesis in experimental conditions in vivo and in vitro. Among the aberrantly expressed miRNAs in psoriasis, one of the most prominently upregulated seems to be miR-21. The beneficial effects of phenolic compounds (curcumin and resveratrol), vitamin D, methyl donors, and omega-3 fatty acids (eicosapentaenoic acid and docosahexaenoic acid) are discussed. Highly expressed miR-155 has been downregulated by flavonoids (through a quercetin-rich diet) and by vitamin D. Quercetin has been effective in modulating miR-146a. On the other hand, downregulated miR-125b expression was restored by vitamin D, Coenzyme Q10 and by microelement selenium. In conclusion, the miRNA profile, together with other ‘omics’, may constitute a multifaceted approach to explore the impact of diet on psoriasis prevention and treatment.


Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3712
Author(s):  
Frank Thielecke ◽  
Andrew Blannin

Omega-3 fatty acids, specifically eicosapentanoic acid (EPA, 20:5n-3) and docosahexanoic acid (DHA, 22:6n-3) are receiving increasing attention in sports nutrition. While the usual focus is that of athletes, questions remain if the different training status between athletes and amateurs influences the response to EPA/DHA, and as to whether amateurs would benefit from EPA/DHA supplementation. We critically examine the efficacy of EPA/DHA on performance, recovery and injury/reduced risk of illness in athletes as well as amateurs. Relevant studies conducted in amateurs will not only broaden the body of evidence but shed more light on the effects of EPA/DHA in professionally trained vs. amateur populations. Overall, studies of EPA/DHA supplementation in sport performance are few and research designs rather diverse. Several studies suggest a potentially beneficial effect of EPA/DHA on performance by improved endurance capacity and delayed onset of muscle soreness, as well as on markers related to enhanced recovery and immune modulation. The majority of these studies are conducted in amateurs. While the evidence seems to broadly support beneficial effects of EPA/DHA supplementation for athletes and more so in amateurs, strong conclusions and clear recommendations about the use of EPA/DHA supplementation are currently hampered by inconsistent translation into clinical endpoints.


Author(s):  
Rossella Avallone ◽  
Giovanni Vitale ◽  
Marco Bertolotti

A nutritional approach could be a promising strategy to prevent or slow the progression of neurodegenerative diseases such as Parkinson’s and Alzheimer’s disease, since there is no effective therapy for these diseases so far. The beneficial effects of omega-3 fatty acids are now well established by a plethora of studies through their involvement in multiple biochemical functions, including synthesis of antinflammatory mediators, cell membrane fluidity, intracellular signalling and gene expression. This systematic review will consider epidemiological studies and clinical trials that assessed the impact of supplementation or dietary intake of omega-3 polyunsaturated fatty acids on neurodegenerative diseases such as Parkinson’s and Alzheimer’s diseases. Indeed, treatment with omega-3 fatty acids, being safe and well tolerated, represent a valuable and biologically plausible tool in the management of neurodegenerative diseases in their early stages.


2019 ◽  
Vol 20 (17) ◽  
pp. 4256 ◽  
Author(s):  
Rossella Avallone ◽  
Giovanni Vitale ◽  
Marco Bertolotti

A nutritional approach could be a promising strategy to prevent or slow the progression of neurodegenerative diseases such as Parkinson’s and Alzheimer’s disease, since there is no effective therapy for these diseases so far. The beneficial effects of omega-3 fatty acids are now well established by a plethora of studies through their involvement in multiple biochemical functions, including synthesis of anti-inflammatory mediators, cell membrane fluidity, intracellular signaling, and gene expression. This systematic review will consider epidemiological studies and clinical trials that assessed the impact of supplementation or dietary intake of omega-3 polyunsaturated fatty acids on neurodegenerative diseases such as Parkinson’s and Alzheimer’s diseases. Indeed, treatment with omega-3 fatty acids, being safe and well tolerated, represents a valuable and biologically plausible tool in the management of neurodegenerative diseases in their early stages.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1358
Author(s):  
Eric N. Ponnampalam ◽  
Andrew J. Sinclair ◽  
Benjamin W. B. Holman

The maximisation of available resources for animal production, food security and maintenance of human–animal wellbeing is important for an economically viable, resilient and sustainable future. Pasture and forage diets are common sources of short chain omega-3 (n-3) polyunsaturated fatty acids (PUFA), while grain-based and feedlot diets are common sources of short chain omega-6 (n-6) PUFA. Animals deposit n-3 and n-6 PUFA as a result of their direct consumption, as feeds or by synthesis of longer chain PUFA from short chain FA precursors in the body via desaturation and elongation processes. Research conducted over the last three decades has determined that the consumption of n-3 PUFA can improve the health and wellbeing of humans through its biological, biochemical, pathological and pharmacological effects. n-6 PUFA also play an important role in human health, but when consumed at high levels, are potentially harmful. Research shows that current consumption of n-6 PUFA by the human population is high due to their meal choices and the supplied food types. If consumption of n-3 PUFA from land- and marine-based foods improves human health, it is likely that these same food types can improve the health and wellbeing of livestock (farm animals) by likewise enhancing the levels of the n-3 PUFA in their circulatory and tissue systems. Modern agricultural systems and advanced technologies have fostered large scale animal and crop production systems. These allow for the utilisation of plant concentrate-based diets to increase the rate of animal growth, often based on economics, and these diets are believed to contribute to unfavourable FA intakes. Knowledge of the risks associated with consuming foods that have greater concentration of n-6 PUFA may lead to health-conscious consumers avoiding or minimising their intake of animal- and plant-based foods. For this reason, there is scope to produce food from plant and animal origins that contain lesser amounts of n-6 PUFA and greater amounts of n-3 PUFA, the outcome of which could improve both animal and human health, wellbeing and resilience to disease.


2021 ◽  
Vol 10 (16) ◽  
pp. e338101623706
Author(s):  
Flávia Santina Pelissari Quinalha ◽  
Luciana Pelissari Manin ◽  
Marina Masetto Antunes ◽  
Guilherme Godoy ◽  
Marília Bellanda Galuch ◽  
...  

Omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) play an important role in human health. Fish oils enriched with EPA and DHA have commercialized in triacylglycerol (TAG) and ethyl ester forms (EE). In this study, we compared the impact of diets containing fish oil in ethyl ester and triacylglycerol forms as a lipid source in five different tissues as liver, skeleteral muscle, brain, and epididymal white adipose tissue (WAT). The DHA levels were higher in the WAT and skeletal muscle of TAG and EE groups in comparison with the SB group. The body weight and brain, liver, epididymal WAT, and gastrocnemius muscle weights, and serum glucose, TG, cholesterol were not different between the groups. Thus, we conclude that EPA and DHA in the form of EE or TAG influence the fatty acids composition of different tissues.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Blanca S. Noriega ◽  
Marcos A. Sanchez-Gonzalez ◽  
Daria Salyakina ◽  
Jonathan Coffman

Background. Recently, the importance of the gut microbiota in the pathogenesis of several disorders has gained clinical interests. Among exogenous factors affecting gut microbiome, diet appears to have the largest effect. Fatty acids, especially omega-3 polyunsaturated, ameliorate a range of several diseases, including cardiometabolic and inflammatory and cancer. Fatty acids associated beneficial effects may be mediated, to an important extent, through changes in gut microbiota composition. We sought to understand the changes of the gut microbiota in response to an omega-3 rich diet.Case Presentation.This case study investigated changes of gut microbiota with an omega-3 rich diet. Fecal samples were collected from a 45-year-old male who consumed 600 mg of omega-3 daily for 14 days. After the intervention, species diversity was decreased, but several butyrate-producing bacteria increased. There was an important decrease inFaecalibacterium prausnitziiandAkkermansiaspp. Gut microbiota changes were reverted after the 14-day washout. Conclusion. Some of the health-related benefits of omega-3 may be due, in part, to increases in butyrate-producing bacteria. These findings may shed light on the mechanisms explaining the effects of omega-3 in several chronic diseases and may also serve as an existing foundation for tailoring personalized medical treatments.


Sign in / Sign up

Export Citation Format

Share Document