scholarly journals Importance of Redox Equilibrium in the Pathogenesis of Psoriasis—Impact of Antioxidant-Rich Diet

Nutrients ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1841
Author(s):  
Anna Winiarska-Mieczan ◽  
Tomasz Mieczan ◽  
Grzegorz Wójcik

Psoriasis is a common, chronic, hyperproliferative, inflammatory skin disease occurring in most ethnic groups in the world. The disease is hereditary but the process of its inheritance is complex and still not fully understood. At the same time, it has been observed that psoriatic lesions may be triggered by certain prooxidative external factors: using narcotics, smoking, drinking alcohol, physical and mental stress, as well as bacterial infections and injury. Since the main physiological marker of psoriasis relates to disorders in the organism’s antioxidative system, it is necessary to develop a well-balanced combination of pharmaceuticals and dietary antioxidants to facilitate the effective treatment and/or prevention of the disease. The dietary sources of antioxidants must be adequate for chronic use regardless of the patient’s age and be easily available, e.g., as ingredients of regular food or dietary supplements. Diet manipulation is a promising therapeutic approach in the context of modulating the incidence of chronic diseases. Another potentially viable method entails the use of nutrigenomics, which guarantees a multiaspectual approach to the problem, including, in particular, analyses of the genetic profiles of psoriasis patients with the view to more accurately targeting key problems. The present paper pertains to the significance of redox equilibrium in the context of psoriasis. Based on information published in worldwide literature over the last decade, the impact of dietary exogenous antioxidants on the course of this chronic disease was analysed.

2018 ◽  
Vol 55 (1) ◽  
pp. 28-32 ◽  
Author(s):  
Illce B LÁZARO-PACHECO ◽  
Alfredo I SERVÍN-CAAMAÑO ◽  
José L PÉREZ-HERNÁNDEZ ◽  
Gabriela ROJAS-LOUREIRO ◽  
Luis SERVÍN-ABAD ◽  
...  

ABSTRACT BACKGROUND: Acid suppression has been associated with adverse events; such as, enteric infections. Proton pump inhibitors (PPI) are frequently prescribed in patients with cirrhosis, but is unclear if PPI are associated with the development of bacterial infections in these patients. OBJECTIVE: To assess the impact of PPI intake on the development of bacterial, viral and fungal infections in patients with cirrhosis. METHODS: An observational, retrospective, historic cohort study. The exposed cohort included patients with cirrhosis with chronic use of PPI. The non-exposed cohort had not been using PPI. The follow-up period was 3 years, searching in the medical records for any events of bacterial infection confirmed by bacteriological culture. RESULTS: One hundred and thirteen patients met the selection criteria, 44 (39%) had chronic use of PPI; of them, 28 (63.6%) patients had not a clear clinical indication to justify the prescription of PPI. Twenty four (21.2%) patients developed bacterial infections during the follow-up period. In the univariate analysis, decompensated cirrhosis (Child B/C), presence of ascites, history of variceal bleeding, and chronic consumption of PPI were risk factors related to the development of infections. But, in the adjusted multivariate analysis only the chronic use of PPI was associated with development of infections (RR=3.6; 95% CI=1.1-12.3; P=0.04). CONCLUSION: There is an over-prescription of PPI without a justified clinical indication. The long-term consumption of PPI in patients with cirrhosis is associated with the development of bacterial infections; therefore these drugs must be carefully prescribed in this specific population.


Author(s):  
Valentin Sencio ◽  
Marina Gomes Machado ◽  
François Trottein

AbstractBacteria that colonize the human gastrointestinal tract are essential for good health. The gut microbiota has a critical role in pulmonary immunity and host’s defense against viral respiratory infections. The gut microbiota’s composition and function can be profoundly affected in many disease settings, including acute infections, and these changes can aggravate the severity of the disease. Here, we discuss mechanisms by which the gut microbiota arms the lung to control viral respiratory infections. We summarize the impact of viral respiratory infections on the gut microbiota and discuss the potential mechanisms leading to alterations of gut microbiota’s composition and functions. We also discuss the effects of gut microbial imbalance on disease outcomes, including gastrointestinal disorders and secondary bacterial infections. Lastly, we discuss the potential role of the lung–gut axis in coronavirus disease 2019.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nathaniel B. Bone ◽  
Eugene J. Becker ◽  
Maroof Husain ◽  
Shaoning Jiang ◽  
Anna A. Zmijewska ◽  
...  

AbstractMetabolic and bioenergetic plasticity of immune cells is essential for optimal responses to bacterial infections. AMPK and Parkin ubiquitin ligase are known to regulate mitochondrial quality control mitophagy that prevents unwanted inflammatory responses. However, it is not known if this evolutionarily conserved mechanism has been coopted by the host immune defense to eradicate bacterial pathogens and influence post-sepsis immunosuppression. Parkin, AMPK levels, and the effects of AMPK activators were investigated in human leukocytes from sepsis survivors as well as wild type and Park2−/− murine macrophages. In vivo, the impact of AMPK and Parkin was determined in mice subjected to polymicrobial intra-abdominal sepsis and secondary lung bacterial infections. Mice were treated with metformin during established immunosuppression. We showed that bacteria and mitochondria share mechanisms of autophagic killing/clearance triggered by sentinel events that involve depolarization of mitochondria and recruitment of Parkin in macrophages. Parkin-deficient mice/macrophages fail to form phagolysosomes and kill bacteria. This impairment of host defense is seen in the context of sepsis-induced immunosuppression with decreased levels of Parkin. AMPK activators, including metformin, stimulate Parkin-independent autophagy and bacterial killing in leukocytes from post-shock patients and in lungs of sepsis-immunosuppressed mice. Our results support a dual role of Parkin and AMPK in the clearance of dysfunctional mitochondria and killing of pathogenic bacteria, and explain the immunosuppressive phenotype associated Parkin and AMPK deficiency. AMPK activation appeared to be a crucial therapeutic target for the macrophage immunosuppressive phenotype and to reduce severity of secondary bacterial lung infections and respiratory failure.


Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 335
Author(s):  
Anssi Karvonen ◽  
Ville Räihä ◽  
Ines Klemme ◽  
Roghaieh Ashrafi ◽  
Pekka Hyvärinen ◽  
...  

Environmental heterogeneity is a central component influencing the virulence and epidemiology of infectious diseases. The number and distribution of susceptible hosts determines disease transmission opportunities, shifting the epidemiological threshold between the spread and fadeout of a disease. Similarly, the presence and diversity of other hosts, pathogens and environmental microbes, may inhibit or accelerate an epidemic. This has important applied implications in farming environments, where high numbers of susceptible hosts are maintained in conditions of minimal environmental heterogeneity. We investigated how the quantity and quality of aquaculture enrichments (few vs. many stones; clean stones vs. stones conditioned in lake water) influenced the severity of infection of a pathogenic bacterium, Flavobacterium columnare, in salmonid fishes. We found that the conditioning of the stones significantly increased host survival in rearing tanks with few stones. A similar effect of increased host survival was also observed with a higher number of unconditioned stones. These results suggest that a simple increase in the heterogeneity of aquaculture environment can significantly reduce the impact of diseases, most likely operating through a reduction in pathogen transmission (stone quantity) and the formation of beneficial microbial communities (stone quality). This supports enriched rearing as an ecological and economic way to prevent bacterial infections with the minimal use of antimicrobials.


2021 ◽  
Vol 22 (7) ◽  
pp. 3358
Author(s):  
Anna Makuch-Kocka ◽  
Marta Andres-Mach ◽  
Mirosław Zagaja ◽  
Anna Śmiech ◽  
Magdalena Pizoń ◽  
...  

About 70 million people suffer from epilepsy—a chronic neurodegenerative disease. In most cases, the cause of the disease is unknown, but epilepsy can also develop as the result of a stroke, trauma to the brain, or the use of psychotropic substances. The treatment of epilepsy is mainly based on the administration of anticonvulsants, which the patient must most often use throughout their life. Despite significant progress in research on antiepileptic drugs, about 30% of patients still have drug-resistant epilepsy, which is insensitive to pharmacotherapy used so far. In our recent studies, we have shown that 4-alkyl-5-aryl-1,2,4-triazole-3-thiones act on the voltage-gated sodium channels and exhibit anticonvulsant activity in an MES (maximal electroshock-induced seizure) and 6Hz test in mice. Previous studies have shown their beneficial toxic and pharmacological profile, but their effect on a living organism during chronic use is still unknown. In the presented study, on the basis of the previously conducted tests and the PAMPA (parallel artificial membrane permeability assay) BBB (blood–brain barrier) test, we selected one 1,2,4-triazole-3-thione derivative—TP-315—for further studies aimed at assessing the impact of its chronic use on a living organism. After long-term administration of TP-315 to Albino Swiss mice, its effect on the functional parameters of internal organs was assessed by performing biochemical, morphological, and histopathological examinations. It was also determined whether the tested compound inhibits selected isoforms of the CYP450 enzyme system. On the basis of the conducted tests, it was found that TP-315 does not show nephrotoxic nor hepatotoxic effects and does not cause changes in hematological parameters. In vitro tests showed that TP-315 did not inhibit CYP2B6, CYP2D6, CYP3A4, or CYP3A5 enzymes at the concentration found in the serum of mice subjected to long-term exposure to this compound.


Author(s):  
Pablo A. Scacchi Bernasconi ◽  
Nancy P. Cardoso ◽  
Roxana Reynoso ◽  
Pablo Scacchi ◽  
Daniel P. Cardinali

AbstractCombinations of fructose- and fat-rich diets in experimental animals can model the human metabolic syndrome (MS). In rats, the increase in blood pressure (BP) after diet manipulation is sex related and highly dependent on testosterone secretion. However, the extent of the impact of diet on rodent hypophysial-testicular axis remains undefined. In the present study, rats drinking a 10% fructose solution or fed a high-fat (35%) diet for 10 weeks had higher plasma levels of luteinizing hormone (LH) and lower plasma levels of testosterone, without significant changes in circulating follicle-stimulating hormone or the weight of most reproductive organs. Diet manipulation brought about a significant increase in body weight, systolic BP, area under the curve (AUC) of glycemia after an intraperitoneal glucose tolerance test (IPGTT), and plasma low-density lipoprotein cholesterol, cholesterol, triglycerides, and uric acid levels. The concomitant administration of melatonin (25 μg/mL of drinking water) normalized the abnormally high LH levels but did not affect the inhibited testosterone secretion found in fructose- or high-fat-fed rats. Rather, melatonin per se inhibited testosterone secretion. Melatonin significantly blunted the body weight and systolic BP increase, the increase in the AUC of glycemia after an IPGTT, and the changes in circulating lipid profile and uric acid found in both MS models. The results are compatible with a primary inhibition of testicular function in diet-induced MS in rats and with the partial effectiveness of melatonin to counteract the metabolic but not the testicular sequelae of rodent MS.


2013 ◽  
Vol 2 (3) ◽  
pp. 65
Author(s):  
A. G. Shakhov ◽  
D. V. Fedosov ◽  
L. Y. Sashnina ◽  
O. V. Kazimirov

<p>As a result of wide antibiotics, sulfonamides and other antimicrobial agents usage for the therapy of the animals with the bacterial infections caused by various causative agents including <em>Escherichia coli</em>, many microorganisms gained resistance to the chemotherapeutic agents. New combined drugs are being worked out during recent years, the components of which have various influence mechanisms on the bacterial cell that helps to provide resistance forming control. The results of the researches of the new antimicrobial agents, containing antibiotics in their composition, and non-antibiotic agent influence on the ultrastructure of <em>Escherichia coli</em> are represented in this study.</p> <p>5-hour <em>Escherichia coli 866</em> culture was processed by the drugs of the minimum bactericidal (Tylocolinum-0.39 µg/ml, Tetragold-6.25 µg/ml, Cidisept-o-25 µg/ml) and 4-time concentrations during 3 hours. Samples and control culture (without drugs) were fixed by the 2.5% glutaricdialdehyde on the s-Collidine Buffer, dehydrated in the ethanol with rising concentration, filled in epoxies. Ultrathin slices were stained by 2% water solution of uranyl acetate and lead citrate for 10 minutes. Then they were examined with the use of the electron microscope JEM-100 CX II by JEOL.</p> <p>The research showed deep ultrastructural changes in <em>Escherichia coli</em> cells under the antimicrobial agent influence determined by synergistic effect of combined Tylocolinum and Tetragold drugs components, possessing various bacteria influencing mechanisms, and aldehyde that is a component of Cidisept-o.</p> The electron microscopy usage allows to get unique information about the impact consequences of the traditional improved drugs and new drugs with antimicrobial activity on the bacterial infectious agents.


2022 ◽  
Author(s):  
Laura Robrahn ◽  
Aline Dupont ◽  
Sandra Jumpertz ◽  
Kaiyi Zhang ◽  
Christian H. Holland ◽  
...  

The hypoxia-inducible transcription factor 1 (HIF-1) has been shown to enhance microbial killing and to ameliorate the course of bacterial infections. While the impact of HIF-1 on inflammatory diseases of the gut has been studied intensively, its function in bacterial infections of the gastrointestinal tract remains largely elusive. With the help of a publicly available gene expression data set, we could infer significant activation of HIF-1 after oral infection of mice with Salmonella Typhimurium. Immunohistochemistry and western blot analysis confirmed marked HIF-1α protein stabilization, especially in the intestinal epithelium. This prompted us to analyze conditional Hif1a -deficient mice to examine cell type-specific functions of HIF-1 in this model. Our results demonstrate enhanced non-canonical induction of HIF-1 activity upon Salmonella infection in the intestinal epithelium as well as in macrophages. Surprisingly, Hif1a deletion in intestinal epithelial cells did not impact on inflammatory gene expression, bacterial spread or disease outcome. In contrast, Hif1a deletion in myeloid cells enhanced intestinal Cxcl2 expression and reduced the cecal Salmonella load. In vitro , HIF-1α-deficient macrophages showed an overall impaired transcription of mRNA encoding pro-inflammatory factors, however, intracellular survival of Salmonella was not impacted by HIF-1α deficiency.


2021 ◽  
Vol 12 (3) ◽  
pp. 1740-1744
Author(s):  
Eva Lorel Kouassi ◽  
Abdul Wahid Ishaque ◽  
Amulya P. Shetty ◽  
Rimpa Devi ◽  
Sheethal Kuriakose ◽  
...  

Although urinary tract infections (UTIs) are considered to be the most common bacterial infections worldwide, their assessment remains a big clinical challenge, because they are not reportable diseases in developed countries like United States and any other parts of the world including India. This situation is further complicated by the fact that accurate diagnosis depends on both the presence of symptoms and a positive urine culture, although in most outpatient settings this diagnosis is made without the benefit of culture. Our study aimed to appraise the impact of urinary tract infections symptoms on selected patients and comprehend their adherence to medications despite the challenges of antimicrobial susceptibility and resistance observed. One hundred and twenty patients with confirmed cases of urinary tract infections were recruited for the study. The mean age of females and males patients was found to be 59.86±2.37and 52.27±3 years respectively. Pertinent descriptive and inferential statistics were performed. Spearman correlation test revealed a strong positive correlation between overall UTIs’ symptoms and their impact on patients at baseline (0.84) and at follow up (0.799) with p value =0.5. On the other hand the majority of patients were found to be adherent to the medications after discharge. The current study revealed that Urinary tract infections if left untreated can negatively impact the lives of patients suffering from it and hinder their adherence to medications. Consequently, accurate and early assessment of UTIs’ symptoms in clinics and hospitals becomes a necessity.


2020 ◽  
Author(s):  
Priyank Patel ◽  
Andrew Frankel

Abstract Background Renin–angiotensin–aldosterone system (RAAS) inhibitors provide significant cardiorenal benefits with improved long-term outcomes for patients. This is most significant for patients receiving maximal RAAS inhibition, but some patients are unable to tolerate this therapy because of hyperkalaemia. Recently published National Institute for Health and Care Excellence (NICE) technology appraisal guidance recommended using sodium zirconium cyclosilicate (SZC) and patiromer for patients with chronic kidney disease (CKD) stage 3b to 5 or heart failure with reduced ejection fraction, who are not taking an optimised dosage of RAAS inhibitor because of hyperkalaemia. Objective Determine the impact of a locally produced guideline on effective implementation of NICE recommendation for use of SZC or patiromer to help maximise inhibition of the renin–angiotensin–aldosterone system within the general nephrology clinic. Methods A local guideline to practically support the implementation of recommendations made by NICE in the chronic use of new potassium binders was produced. One hundred sequential patients in a general nephrology clinic with non-immune chronic kidney disease (CKD 3 to 5) had their electronic records reviewed. Those with an indication for RAAS inhibition were identified. Results Of the 100 consecutive patients audited, 46 were female and 54 were male. The mean age of these patients was 64 and the mean estimated glomerular filtration rate (eGFR) was 33. Sixty-eight patients had an indication for being on RAAS inhibition with only 10 on maximal doses. Of the remaining 58 patients, 26 (45%) were limited by hyperkalaemia. Of these 26 patients, 12 of these patients (46%) had hyperkalaemia associated with an episode of acute kidney injury (AKI). Therefore, 14% of patients attending a general nephrology clinic were identified suitable for SZC and patiromer. Conclusions A significant proportion (14%) of unselected patients attending a general nephrology clinic were not on optimum RAAS inhibition due to hyperkalaemia. These patients would meet the criteria established within a working guideline for the implementation of the chronic use of SZC or patiromer and are likely to attain prognostic long-term benefit by using these new potassium binders to maximise RAAS inhibition. This analysis has implications for renal centres across the UK.


Sign in / Sign up

Export Citation Format

Share Document